【題目】如圖,在四邊形ABCD中,BD平分∠ABC,BAD=BDC=90°,EBC的中點(diǎn),AEBD相交于點(diǎn)F.若BC=4,CBD=30°,則DF的長為____

【答案】

【解析】

先在Rt△BDC中,利用銳角三角函數(shù)求出BD,再利用直角三角形的性質(zhì)求出DE=BE=2,即:∠BDE=∠ABD,進(jìn)而判斷出DE∥AB,再求出AB=3,即可得出結(jié)論.

Rt△BDC中,BC=4,∠DBC=30°,
∴cos∠DBC=cos30°
∴BD=2

連接DE,
∵∠BDC=90°,點(diǎn)EBC中點(diǎn),
∴DE=BE=CE=BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
,
Rt△ABD中,∠ABD=30°,BD=2
∴AB=3,

,
∴DF=,

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生甲與乙學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:甲手中有 、 三張撲克牌,乙手中有 、、 三張撲克牌,每局比賽時(shí),兩人從各自手中隨機(jī)取一張牌進(jìn)行比較,數(shù)字大的則本局獲勝.

(1)若每人隨機(jī)取出手中的一張牌進(jìn)行比較,請(qǐng)列舉出所有情況;

(2)求學(xué)生乙一局比賽獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACABCD的對(duì)角線,在AD邊上取一點(diǎn)F,連接BFAC于點(diǎn)E,并延長BFCD的延長線于點(diǎn)G

(1)若∠ABF=∠ACF,求證:CE2EFEG;

(2)若DGDC,BE=6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AC為對(duì)角線,E是邊AD上一點(diǎn),BE⊥AC交AC于點(diǎn)F,BE、CD的延長線交于點(diǎn)G,且∠ABE=∠CAD.

(1)求證:四邊形ABCD是矩形;

(2)如果AE=EG,求證:AC2=BCBG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮分別從同一直線跑道A、B兩端同時(shí)相向勻速出發(fā),小明和小亮第一次相遇后,小明覺得自己速度太慢便提速至原速的倍,并勻速運(yùn)動(dòng)達(dá)到B端,且小明到達(dá)B端后停止運(yùn)動(dòng),小亮勻速跑步到達(dá)A端后,立即按原速返回B端(忽略調(diào)頭時(shí)間),回到B端后停止運(yùn)動(dòng),已知兩人相距的路程S(千米)與小亮出發(fā)時(shí)間t(秒)之間的關(guān)系如圖所示,則當(dāng)小明到達(dá)B端后,經(jīng)過_____秒,小亮回到B端.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3),反比例函數(shù)y= (k>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.

(1)求反比例函數(shù)的表達(dá)式及點(diǎn)E的坐標(biāo);

(2)點(diǎn)FOC邊上一點(diǎn),FBCDEB,求點(diǎn)F的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)與一次函數(shù)交于頂點(diǎn)和點(diǎn)兩點(diǎn),一次函數(shù)與軸交于點(diǎn).

(1)求二次函數(shù)和一次函數(shù)的解析式;

(2)軸上存在點(diǎn)使的面積為9,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC滿足PBE∽△DBC,APD是等腰三角形PE的長為數(shù)___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線y=x軸交于點(diǎn)A,與雙曲線在第一象限內(nèi)交于點(diǎn)B,BCx軸于點(diǎn)C,OC=3AO

(1)求雙曲線的解析式;

(2)直接寫出不等式的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案