【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1,AC1與BD1交于點P.
(1)如圖1,若四邊形ABCD是正方形.
①求證:△AOC1≌△BOD1.
②請直接寫出AC1 與BD1的位置關(guān)系.
(2)如圖2,若四邊形ABCD是菱形,AC=5,BD=7,設(shè)AC1=kBD1.判斷AC1與BD1的位置關(guān)系,說明理由,并求出k的值.
(3)如圖3,若四邊形ABCD是平行四邊形,AC=5,BD=10,連接DD1,設(shè)AC1=kBD1.請直接寫出k的值和AC12+(kDD1)2的值.
【答案】(1)①詳見解析;②AC1⊥BD1;(2)AC1⊥BD1,理由詳見解析,k=;(3)k=, AC12+(kDD1)2=25.
【解析】
(1)①如圖1,根據(jù)正方形的性質(zhì)得OC=OA=OD=OB,AC⊥BD,則∠AOB=∠COD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC1=OC,OD1=OD,∠COC1=∠DOD1,則OC1=OD1,利用等角的補角相等得∠AOC1=∠BOD1,然后根據(jù)“SAS”可證明△AOC1≌△BOD1;
②由∠AOB=90°,則∠OAB+∠ABP+∠OBD1=90°,所以∠OAB+∠ABP+∠OAC1=90°,則∠APB=90°所以AC1⊥BD1;
(2)如圖2,根據(jù)菱形的性質(zhì)得OC=OA=AC,OD=OB=BD,AC⊥BD,則∠AOB=∠COD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC1=OC,OD1=OD,∠COC1=∠DOD1,則OC1=OA,OD1=OB,利用等角的補角相等得∠AOC1=∠BOD1,加上,根據(jù)相似三角形的判定方法得到△AOC1∽△BOD1,得到∠OAC1=∠OBD1,由∠AOB=90°得∠OAB+∠ABP+∠OBD1=90°,則∠OAB+∠ABP+∠OAC1=90°,則∠APB=90°,所以AC1⊥BD1;然后根據(jù)相似比得到,所以k=;
(3)與(2)一樣可證明△AOC1∽△BOD1,則,所以k=;根據(jù)旋轉(zhuǎn)的性質(zhì)得OD1=OD,根據(jù)平行四邊形的性質(zhì)得OD=OB,則OD1=OB=OD,于是可判斷△BDD1為直角三角形,根據(jù)勾股定理得BD12+DD12=BD2=100,所以(2AC1)2+DD12=100,于是有AC12+(kDD1)2=25.
(1)①證明:如圖1,
∵四邊形ABCD是正方形,
∴OC=OA=OD=OB,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,
∴OC1=OC,OD1=OD,∠COC1=∠DOD1,
∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,
在△AOC1和△BOD1中
,
∴△AOC1≌△BOD1(SAS);
②AC1⊥BD1;
∵∠AOB=90°,
∴∠OAB+∠ABP+∠OBD1=90°,
∴∠OAB+∠ABP+∠OAC1=90°,則∠APB=90°
∴AC1⊥BD1;
(2)AC1⊥BD1.
理由如下:如圖2,
∵四邊形ABCD是菱形,
∴OC=OA=AC,OD=OB=BD,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,
∴OC1=OC,OD1=OD,∠COC1=∠DOD1,
∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,
∴,
∴△AOC1∽△BOD1,
∴∠OAC1=∠OBD1,
又∵∠AOB=90°,
∴∠OAB+∠ABP+∠OBD1=90°,
∴∠OAB+∠ABP+∠OAC1=90°,
∴∠APB=90°
∴AC1⊥BD1;
∵△AOC1∽△BOD1,
∴
∴k=;
(3)如圖3,與(2)一樣可證明△AOC1∽△BOD1,
∴,
∴k=;
∵△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,
∴OD1=OD,
而OD=OB,
∴OD1=OB=OD,
∴△BDD1為直角三角形,
在Rt△BDD1中,
BD12+DD12=BD2=100,
∴(2AC1)2+DD12=100,
∴AC12+(kDD1)2=25.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣1與拋物線y=﹣x2+6x﹣5相交于A、D兩點.拋物線的頂點為C,連結(jié)AC.
(1)求A,D兩點的坐標(biāo);
(2)點P為該拋物線上一動點(與點A、D不重合),連接PA、PD.
①當(dāng)點P的橫坐標(biāo)為2時,求△PAD的面積;
②當(dāng)∠PDA=∠CAD時,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展平,再一次折疊紙片,使點A落在EF上的點A′處,并使折痕經(jīng)過點B,得到折痕BM,若矩形紙片的寬AB=4,則折痕BM的長為( )
A.B.C.8D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x>0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為( )
A. 2B. 3C. 4D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接年中、日、韓三國青少年橄欖球比賽,南雅中學(xué)計劃對面積為運動場進(jìn)行塑膠改造.經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,已知甲隊每天能改造的面積是乙隊每天能改造面積的倍,并且在獨立完成面積為的改造時,甲隊比乙隊少用天.
(1)求甲、乙兩工程隊每天能完成塑膠改造的面積;
(2)設(shè)甲工程隊施工天,乙工程隊施工天,剛好完成改造任務(wù),求與的函數(shù)解析式;
(3)若甲隊每天改造費用是萬元,乙隊每天改造費用是萬元,且甲、乙兩隊施工的總天數(shù)不超過天,如何安排甲、乙兩隊施工的天數(shù),使施工總費用最低?并求出最低的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點為B.AC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CE丄AB,交AB的延長線于點E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時,求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;
(3)銷售價格應(yīng)定為多少元時,獲得利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com