【題目】如圖①,在RtABC中,AB=AC,BAC=90°,過點A的直線l繞點A旋轉(zhuǎn),BDlD,CElE.

(1)試說明:DE=BD+CE.

(2)當直線l繞點A旋轉(zhuǎn)到如圖②所示的位置時,(1)中結(jié)論是否成立?若成立,請說明;若不成立,請?zhí)骄?/span>DE,BD,CE又有怎樣的數(shù)量關(guān)系,并寫出探究過程.

【答案】(1) 見解析; (2)(1)中結(jié)論不成立.DE=BD-CE. 探究過程見解析.

【解析】

(1)由AAS證明ABD≌△CAE,得到BD=AE,AD=CE,即可解決問題.(2)由AAS證明證明ABD≌△CAE,得出BD=AE,AD=CE,即可得出結(jié)論.

(1)因為BDl,CEl,

所以∠ADB=AEC=90°.

所以∠DBA+BAD=90°.

又因為∠BAC=90°,

所以∠BAD+CAE=90°.

所以∠DBA=CAE.

因為AB=AC,ADB=CEA=90°,

所以ABD≌△CAE(AAS).

所以AD=CE,BD=AE.

AD+AE=BD+CE,

DE=BD+CE.

(2)(1)中結(jié)論不成立.

DE=BD-CE.

(1)說明ABD≌△CAE,

所以BD=AE,AD=CE.

又因為AE-AD=DE,

所以DE=BD-CE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M,N為坐落于公路兩旁的村莊,如果一輛施工的機動車由A向B行駛,產(chǎn)生的噪音會對兩個村莊造成影響.

(1)當施工車行駛到何處時,產(chǎn)生的噪音分別對兩個村莊影響最大?在圖中標出來.

(2)當施工車從A向B行駛時,產(chǎn)生的噪音對M,N兩個村莊的影響情況如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)學習過反比例函數(shù)y= 的圖象和性質(zhì),請回顧研究它的過程,對函數(shù)y= 進行探索.下列結(jié)論:
①圖象在第一、二象限,②圖象在第一、三象限,
③圖象關(guān)于y軸對稱,④圖象關(guān)于原點對稱,
⑤當x>0時,y隨x增大而增大;當x<0時,y隨x增大而增大,
⑥當x>0時,y隨x增大而減;當x<0時,y隨x增大而增大,
是函數(shù)y= 的性質(zhì)及它的圖象特征的是: . (填寫所有正確答案的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b、c滿足(a﹣7.5)2++|c﹣8.5|=0.求:

(1)a、b、c的值;

(2)求以a、b、c為邊構(gòu)成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明和小月兩家位于A,B兩處隔河相望,要測得兩家之間的距離,小明設計方案如下:

①從點A出發(fā)沿河岸畫一條射線AM;

②在射線AM上截取AF=FE;

③過點EECAB,使B,F(xiàn),C在一條直線上;

CE的長就是A,B間的距離.

(1)請你說明小明設計的原理.

(2)如果不借助測量儀,小明的設計中哪一步難以實現(xiàn)?

(3)你能設計出更好的方案嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3與x軸交于點A(1,0)和點B,與y軸交于點C,且其對稱軸l為x=﹣1,點P是拋物線上B,C之間的一個動點(點P不與點B,C重合).

(1)直接寫出拋物線的解析式;
(2)小唐探究點P的位置時發(fā)現(xiàn):當動點N在對稱軸l上時,存在PB⊥NB,且PB=NB的關(guān)系,請求出點P的坐標;
(3)是否存在點P使得四邊形PBAC的面積最大?若存在,請求出四邊形PBAC面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,∠C=90°,BE平分∠ABC,AC邊于點E,ED⊥AB,垂足為D.若△ABC的周長為12,△ADE的周長為6,BC的長為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示;

(1)求y(千克)與銷售價x的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要獲得150元的銷售利潤,銷售價應定為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為10,B是數(shù)軸上位于點A左側(cè)一點,AB=30,動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為.

(1)數(shù)軸上點B表示的數(shù)是________,P表示的數(shù)是________(用含的代數(shù)式表示);

(2)M為線段AP的中點,N為線段BP的中點,在點P運動的過程中線段MN的長度會發(fā)生變化嗎?如果不變,請求出這個長度;如果會變化,請用含的代數(shù)式表示這個長度;

(3)動點Q從點B處出發(fā)以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時與點Q相距4個單位長度?

查看答案和解析>>

同步練習冊答案