如圖,已知正方形ABCD的邊長(zhǎng)為12cm,ECD邊上一點(diǎn),DE=5cm.以點(diǎn)A
為中心,將△ADE按順時(shí)針?lè)较蛐D(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng)為    cm.
π(也可寫成6.5π
先利用勾股定理求出AE的長(zhǎng),然后根據(jù)旋轉(zhuǎn)的性質(zhì)得到旋轉(zhuǎn)角為∠DAB=90°,最后根據(jù)弧長(zhǎng)公式即可計(jì)算出點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng).
解:∵AD=12,DE=5,
∴AE==13,
又∵將△ADE按順時(shí)針?lè)较蛐D(zhuǎn)得△ABF,而AD=AB,
∴旋轉(zhuǎn)角為∠DAB=90°,
∴點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng)=(cm).
故答案為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(11·佛山)在矩形ABCD中,兩條對(duì)角線AC、BD相交于點(diǎn)O,若AB=OB=4,則AD= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,對(duì)角線把等腰梯形分成了四個(gè)小三角形,任意選取其中兩個(gè)小三角形是全等三角形的概率是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在四條平行線l1、l2、l3、l4上,這四條直
線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h2
(2)設(shè)正方形ABCD的面積為S,求證:S=(h1+h2)2+h12;
(3)若h1+h2=1,當(dāng)h1變化時(shí),說(shuō)明正方形ABCD的面積S隨h1的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形紙片ABCD中,AD//BC,∠A=90º,∠C=30º.折疊紙片使BC經(jīng)過(guò)點(diǎn)D,點(diǎn)C落在點(diǎn)E處,BF是折痕,且BF=CF=8.
(1)求∠BDF的度數(shù);
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分8分)兩個(gè)全等的直角三角形重疊放在直線上,如圖⑴,AB=6,BC=8,∠ABC=90°,將Rt△ABC在直線上左右平移,如圖⑵所示.
⑴求證:四邊形ACFD是平行四邊形;
⑵怎樣移動(dòng)Rt△ABC,使得四邊形ACFD為菱形;
⑶將Rt△ABC向左平移,求四邊形DHCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將矩形ABCD對(duì)折,得折痕PQ,再沿MN翻折,使點(diǎn)C恰好落在折痕PQ上的點(diǎn)C′處,點(diǎn)D落在D′處,其中MBC的中點(diǎn).連接AC′,BC′,則圖中共有等腰三角形的個(gè)數(shù)是                 (    ).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011•臨沂)如圖,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,則梯形ABCD的周長(zhǎng)是( 。

A、12            B、14      C、16             D、18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若一個(gè)四邊形四條邊的長(zhǎng)分別為a、b、c、d,若a+b十c+d="2(a" c + b d )則這個(gè)四邊形是(    )
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

同步練習(xí)冊(cè)答案