【題目】(1)如圖①,已知直線l1l2,且l3l1l2分別交于A,B兩點(diǎn),點(diǎn)P在線段AB上,則∠1,∠2,∠3之間的等量關(guān)系是____

(2)如圖②,點(diǎn)AB處北偏東40°方向,在C處北偏西45°方向,則∠BAC____°.

(3)如圖③,∠ABD和∠BDC的平分線交于點(diǎn)E,BEAB于點(diǎn)F,∠1+∠290°,試說明:ABAB,并探究∠2與∠3的數(shù)量關(guān)系.

【答案】(1)∠1+∠2=∠32853)見解析,∠2+∠390°

【解析】

1)作PMAC.根據(jù)平行線間的傳遞性,得PMBD.再由平行線的性質(zhì),得∠1=∠CPM,∠2=∠MPD.所以,∠1+∠2=∠3.2)由題可知∠BAC=∠B+∠C,所以,∠BAC85°.3)由題意,先證明ABAB.再通過角的變換,得到∠BED=∠DAB90°,所以∠3+∠FDE90,最后得到∠2+∠390.

(1)如答圖,作PMAC,

ACBD,∴PMBD,

∴∠1=∠CPM,∠2=∠MPD,

∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.

(2)由題可知∠BAC=∠B+∠C.

∵∠B40°,∠C45°

∴∠BAC40°45°85°.

(3)證明:∵BE,DE分別平分∠ABD,∠BDC

∴∠1ABD,∠2BDC.

∵∠1+∠290°

∴∠ABD+∠BDC180°,

ABAB.

DE平分∠BDC,

∴∠2=∠FDE.

∵∠1+∠290°

∴∠BED=∠DAB90°,

∴∠3+∠FDE90°

∴∠2+∠390°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)M、N同時(shí)從原點(diǎn)出發(fā)沿?cái)?shù)軸做勻速運(yùn)動(dòng),己知?jiǎng)狱c(diǎn)M、N的運(yùn)動(dòng)速度比是1:2(速度單位:1個(gè)單位長度/秒),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)若動(dòng)點(diǎn)M向數(shù)軸負(fù)方向運(yùn)動(dòng),動(dòng)點(diǎn)N向數(shù)軸正方向運(yùn)動(dòng),當(dāng)t=2秒時(shí),動(dòng)點(diǎn)M運(yùn)動(dòng)到A點(diǎn),動(dòng)點(diǎn)N運(yùn)動(dòng)到B點(diǎn),且AB=12(單位長度).

①在直線l上畫出A、B兩點(diǎn)的位置,并回答:點(diǎn)A運(yùn)動(dòng)的速度是   (單位長度/秒);點(diǎn)B運(yùn)動(dòng)的速度是   (單位長度/秒).

②若點(diǎn)P為數(shù)軸上一點(diǎn),且PA﹣PB=OP,求的值;

(2)由(1)中A、B兩點(diǎn)的位置開始,若M、N同時(shí)再次開始按原速運(yùn)動(dòng),且在數(shù)軸上的運(yùn)動(dòng)方向不限,再經(jīng)過幾秒,MN=4(單位長度)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)PA點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)QB點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn)點(diǎn)PQ分別以1和3的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過PQE,問:點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),QFC全等?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,EFBC,垂足分別為D、F,∠2+3180°,試說明:∠GDC=∠B.請(qǐng)補(bǔ)充說明過程,并在括號(hào)內(nèi)填上相應(yīng)的理由.

解:∵ADBC,EFBC(已知)

∴∠ADB=∠EFB90°   ,

EFAD   ),

   +2180°   ).

又∵∠2+3180°(已知),

∴∠1=∠3   ),

AB      ),

∴∠GDC=∠B   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,AD⊥CD于點(diǎn)D.E是AB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.

(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數(shù).
②若⊙O的半徑為2 ,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是邊BC、AD上的點(diǎn),有下列條件:

AECF;②BEFD;③∠1=∠2;④AECF.

若要添加其中一個(gè)條件,使四邊形AECF一定是平行四邊形,則添加的條件可以是(   )

A. ①②③④ B. ①②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動(dòng),為了解全校植樹情況,對(duì)該校甲、乙、丙、丁四個(gè)班級(jí)植樹情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:

(1)這四個(gè)班共植樹棵;
(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級(jí)植樹的平均成活率是95%,全校共植樹2000棵,請(qǐng)你估計(jì)全校種植的樹中成活的樹有多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由太原開往運(yùn)城的D5303次列車,途中有6個(gè)停車站,這次列車的不同票價(jià)最多有( )

A. 28 B. 15 C. 56 D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.平行四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案