【題目】如圖,將邊長(zhǎng)為3cm的正方形ABCD繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到正方形EBCF,則兩個(gè)圖形重疊部分(陰影部分)的面積為______cm2

【答案】3

【解析】

由正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可得AB=BG,由“HL”可證RtABM≌△GBM,可得∠ABM=GBM=30°,可求AM=,由可求陰影部分的面積.

解:如圖,設(shè)ADFG相交于點(diǎn)M,連接BM

∵四邊形ABCD是正方形,

AB=BC=3cm,∠ABC=90°,

∵正方形ABCD繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到正方形EBCF,

BG=BC,∠GBC=30°,

BG=AB,且BM=BM,

RtABM≌△GBMHL

∴∠ABM=GBM,

∵∠ABM+GBM=ABC-GBC=60°

∴∠ABM=GBM=30°,

tanABM=

AM=

S陰影=2×SABM=2××3×=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,對(duì)角線(xiàn),,點(diǎn)從點(diǎn)出發(fā)沿方向勻速運(yùn)動(dòng),速度是,點(diǎn)從點(diǎn)出發(fā)沿方向勻速運(yùn)動(dòng),速度是,,與交于點(diǎn),連接.設(shè)運(yùn)動(dòng)時(shí)間為.

1)當(dāng)時(shí),求的值;

2)設(shè)四邊形的面積為,求之間的函數(shù)關(guān)系式;

3)是否存在某一時(shí)刻,使平分?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知RtABC,∠BAC=90°,點(diǎn)DBC中點(diǎn),AD=AC,BC=2,過(guò)A,D兩點(diǎn)作⊙O,交AB于點(diǎn)E

1)求弦AD的長(zhǎng);

2)如圖1,當(dāng)圓心OAB上,且點(diǎn)M是圓O下方的半圓上的一動(dòng)點(diǎn),連接DMAB于點(diǎn)N,求當(dāng)DEM是等腰三角形時(shí),求ON的長(zhǎng);

3)如圖2,當(dāng)圓心O不在AB上且動(dòng)圓⊙ODB相交于點(diǎn)Q時(shí),過(guò)DDHAB(垂足為H)并交⊙O于點(diǎn)P,問(wèn):當(dāng)⊙O變動(dòng)時(shí)DP-DQ的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,菱形中,,是對(duì)角線(xiàn)上的一點(diǎn),點(diǎn)的延長(zhǎng)線(xiàn)上,且,,連接.

1)證明:;

2)判斷的形狀,并說(shuō)明理由.

3)如圖2,把菱形改為正方形,其他條件不變,直接寫(xiě)出線(xiàn)段與線(xiàn)段的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,甲、乙兩名大學(xué)生騎自行車(chē)去距學(xué)校6000米的凈月潭公園.兩人同時(shí)從學(xué)校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時(shí),甲同學(xué)發(fā)現(xiàn)忘記帶學(xué)生證,以1.5a米/分的速度按原路返回學(xué)校,取完學(xué)生證(在學(xué)校取學(xué)生證所用時(shí)間忽略不計(jì)),繼續(xù)以返回時(shí)的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車(chē)的速度始終不變.設(shè)甲、乙兩名大學(xué)生距學(xué)校的路程為s(米),乙同學(xué)行駛的時(shí)間為t(分),s與t之間的函數(shù)圖象如圖所示.

(1)求a、b的值.

(2)求甲追上乙時(shí),距學(xué)校的路程.

(3)當(dāng)兩人相距500米時(shí),直接寫(xiě)出t的值是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某隧道截面示意圖,它是由拋物線(xiàn)和長(zhǎng)方形構(gòu)成,已知米,米,拋物線(xiàn)頂點(diǎn)D到地面OA的垂直距離為10米,以OA所在直線(xiàn)為x軸,以OB所在直線(xiàn)為y軸建立直角坐標(biāo)系.

求拋物線(xiàn)的解析式;

由于隧道較長(zhǎng),需要在拋物線(xiàn)型拱壁上需要安裝兩排燈,使它們到地面的高度相同,如果燈離地面的高度不超過(guò)8米,那么兩排燈的水平距離最小是多少米?

一輛特殊貨運(yùn)汽車(chē)載著一個(gè)長(zhǎng)方體集裝箱,集裝箱寬為4m,最高處與地面距離為6m,隧道內(nèi)設(shè)雙向行車(chē)道,雙向行車(chē)道間隔距離為,交通部門(mén)規(guī)定,車(chē)載貨物頂部距離隧道壁的豎直距離不少于,才能安全通行,問(wèn)這輛特殊貨車(chē)能否安全通過(guò)隧道?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)的圖象與軸交于,兩點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿方向運(yùn)動(dòng),以為邊作矩形(點(diǎn)軸上),設(shè)運(yùn)動(dòng)的時(shí)間為.

1)求拋物線(xiàn)的表達(dá)式;

2)過(guò)點(diǎn)軸于點(diǎn),交拋物線(xiàn)于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)如圖,動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿方向運(yùn)動(dòng),以為邊作等腰直角三角形,交于點(diǎn).給出如下定義:在四邊形中,,,我們把這種兩組鄰邊分別相等的四邊形叫做箏形”.當(dāng)矩形和等腰三角形重疊的四邊形是箏形時(shí),求箏形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB⊙O的直徑,C⊙O上一點(diǎn),如圖,AB=12,BC=4.BH⊙O相切于點(diǎn)B,過(guò)點(diǎn)CBH的平行線(xiàn)交AB于點(diǎn)E.

(1)CE的長(zhǎng);

(2)延長(zhǎng)CEF,使EF=,連接BF并延長(zhǎng)BF⊙O于點(diǎn)G,求BG的長(zhǎng);

(3)在(2)的條件下,連接GC并延長(zhǎng)GCBH于點(diǎn)D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱(chēng)為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱(chēng)為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫(xiě)出以下各點(diǎn)到圖形G1的距離跨度

A1,0的距離跨度______________;

B-, 的距離跨度____________;

C-3,-2的距離跨度____________

根據(jù)中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________

2如圖2在平面直角坐標(biāo)系xOy,圖形G2為以D-10為圓心,2為半徑的圓,直線(xiàn)y=kx-1上存在到G2的距離跨度為2的點(diǎn),k的取值范圍

3如圖3,在平面直角坐標(biāo)系xOy,射線(xiàn)OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運(yùn)動(dòng)若射線(xiàn)OP上存在點(diǎn)到E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案