在一次研究性學(xué)習(xí)活動(dòng)中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動(dòng),順時(shí)針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測(cè)量,發(fā)現(xiàn)在旋轉(zhuǎn)過(guò)程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時(shí)他們得到的一些猜想:
①M(fèi)E=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請(qǐng)你對(duì)這三個(gè)猜想作出判斷(正確的在序號(hào)后的括號(hào)內(nèi)打上“√”,錯(cuò)誤的打上“×”):
①( );②( );③( )
(2)小組成員還發(fā)現(xiàn):(1)中的△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請(qǐng)你指出在怎樣的位置時(shí)△EMN的面積S取得最大值.(不必證明)
(3)上面的三個(gè)猜想中若有正確的,請(qǐng)選擇其中的一個(gè)給予證明;若都是錯(cuò)誤的,請(qǐng)選擇其一說(shuō)明理由.

【答案】分析:根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可知,∠OAE=∠OEA,∠MAO=∠MEO=45°,∴∠MAE=∠MEA,所以ME=MA;∠MOE+∠NOE=∠AOD=×90°=45°,即∠MON保持45°不變.并且當(dāng)∠AOE=45°時(shí),△EMN的面積S取得最大值.
解答:解:(1)①(√);②(×);③(√).

(2)當(dāng)∠AOE=45°時(shí),△EMN的面積S取得最大值.

(3)證明:對(duì)于猜想①,連接OA、OE、AE、OD、ED.由已知得OA=OE,
∴∠OAE=∠OEA.
又∵∠OAM=∠OEM=45°,
∴∠OAE-∠OAM=∠OEA-∠OEM,即∠MAE=∠MEA.
∴ME=MA.
對(duì)于猜想③,證得OM平分∠EOA,同理ON平分∠DOE,
∴∠MOE+∠NOE=∠AOD=×90°=45°,即∠MON保持45°不變.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì).旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.正方形是特殊條件最多的圖形,它的特性要重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在一次研究性學(xué)習(xí)活動(dòng)中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動(dòng),順時(shí)針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測(cè)量,發(fā)現(xiàn)在旋轉(zhuǎn)過(guò)程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時(shí)他們得到的一些猜想:
①M(fèi)E=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請(qǐng)你對(duì)這三個(gè)猜想作出判斷(正確的在序號(hào)后的括號(hào)內(nèi)打上“√”,錯(cuò)誤的打上“×”):
①( 。;②( 。;③( 。
(2)小組成員還發(fā)現(xiàn):(1)中的△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請(qǐng)你指出在怎樣的位置時(shí)△EMN的面積S取得最大值.(不必證明)
(3)上面的三個(gè)猜想中若有正確的,請(qǐng)選擇其中的一個(gè)給予證明;若都是錯(cuò)誤的,請(qǐng)選擇其一說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•鄞州區(qū)模擬)在一次研究性學(xué)習(xí)活動(dòng)中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動(dòng),順時(shí)針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測(cè)量,發(fā)現(xiàn)在旋轉(zhuǎn)過(guò)程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時(shí)他們得到的一些猜想:
①M(fèi)E=MA
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請(qǐng)你對(duì)這三個(gè)猜想做出判斷(正確的在序號(hào)后的括號(hào)內(nèi)打上“√”,錯(cuò)誤的打上“×”):
  ②
×
×
 ③

(2)上面的三個(gè)猜想中若有正確的,請(qǐng)選擇其中的一個(gè)給予證明;若都是錯(cuò)誤的,請(qǐng)選擇其一說(shuō)明理由.
(3)小組成員還發(fā)現(xiàn):(1)中的△ENN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請(qǐng)你指出當(dāng)旋轉(zhuǎn)角∠AOE為多少度時(shí)△ENN的面積S取得最大值.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一次研究性學(xué)習(xí)活動(dòng)中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動(dòng),順時(shí)針旋轉(zhuǎn)正方形EFGH,如圖所示.小組成員經(jīng)觀察、測(cè)量,發(fā)現(xiàn)在旋轉(zhuǎn)過(guò)程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時(shí)他們得到的一些猜想:
①M(fèi)E=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變;
④△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.當(dāng)旋轉(zhuǎn)角∠AOE為45°時(shí)△ENN的面積S取得最大值.
請(qǐng)你對(duì)這四個(gè)猜想作出判斷,把正確的猜想序號(hào)寫在橫線上
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省九年級(jí)下學(xué)期3月考數(shù)學(xué)卷(解析版) 題型:填空題

在一次研究性學(xué)習(xí)活動(dòng)中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動(dòng),順時(shí)針旋轉(zhuǎn)正方形EFGH,如圖所示.小組成員經(jīng)觀察、測(cè)量,發(fā)現(xiàn)在旋轉(zhuǎn)過(guò)程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時(shí)他們得到的一些猜想:

①M(fèi)E=MA

②兩張正方形紙片的重疊部分的面積為定值;

③∠MON保持45°不變.

④△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.當(dāng)旋轉(zhuǎn)角∠AOE為45°時(shí)△ENN的面積S取得最大值.

請(qǐng)你對(duì)這四個(gè)猜想作出判斷,把正確的猜想序號(hào)寫在橫線上              

 

查看答案和解析>>

同步練習(xí)冊(cè)答案