取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為Bn,得Rt△ABE,如圖2;
第三步:沿EB線(xiàn)折疊得折痕EF,如圖3;
利用展開(kāi)圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

【答案】分析:(1)應(yīng)該是等邊三角形.先證明△ABE≌△AB′E,得出∠AB'E=90°,∠A=∠BAE,然后證明△AB′E≌△AB′F,得出AE=AF,∠B'AE=∠B'AF,從而可確定∠EAF=60°,繼而得出△AEF是等邊三角形.
(2)根據(jù)(1)我們可看出,要想折出等邊三角形,AD≥AF,我們看當(dāng)AD=AF時(shí),矩形的長(zhǎng)和寬的比例是多少,AF:AB=sin60°=2:,那么要想折出等邊三角形,那么矩形的寬就必須小于長(zhǎng)的
解答:解:(1)△AEF是等邊三角形.
證明:∵△ABE與△AB′E完全重合,
∴△ABE≌△AB′E,∠BAE=∠1,
由平行線(xiàn)等分線(xiàn)段定理知EB′=B′F,
又∵∠AB′E=90°
∴△AB′E≌△AB′F,
∴AE=AF,∠1=∠2=∠BAD=30°,
∴△AEF是等邊三角形.

(2)不一定.
由上推證可知當(dāng)矩形的長(zhǎng)恰好等于等邊△AEF的邊AF時(shí),即矩形的寬:長(zhǎng)=AB:AF=sin60°=:2
時(shí)正好能折出.
設(shè)矩形的長(zhǎng)為a,寬為b,可知
當(dāng)b≤a時(shí),按此法一定能折出等邊三角形;
當(dāng)a<b<a時(shí),按此法無(wú)法折出完整的等邊三角形.
點(diǎn)評(píng):本題主要考查了折疊的性質(zhì)以及等邊三角形的判定,根據(jù)折疊的性質(zhì)得出相關(guān)的邊和角相等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為Bn,得Rt△ABE,如圖2;
第三步:沿EB線(xiàn)折疊得折痕EF,如圖3;
利用展開(kāi)圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線(xiàn)折疊得折痕EF,如圖(3)所示;利用展開(kāi)圖(4)所示.
精英家教網(wǎng)
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線(xiàn)EF的表達(dá)式為y=kx-k (k<0)
①問(wèn):EF與拋物線(xiàn)y=-
1
8
x2
有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線(xiàn)只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年安徽省馬鞍山市二中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為Bn,得Rt△ABE,如圖2;
第三步:沿EB線(xiàn)折疊得折痕EF,如圖3;
利用展開(kāi)圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•山西)取一張矩形的紙進(jìn)行折疊,具體操作過(guò)程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;
第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為Bn,得Rt△ABE,如圖2;
第三步:沿EB線(xiàn)折疊得折痕EF,如圖3;
利用展開(kāi)圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案