【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi).為更好地決策,自來水公司的隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括在右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)此次抽樣調(diào)查的樣本容量是
(2)補(bǔ)全頻數(shù)分布直方圖,并求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來水公司將基本用水量定位每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價(jià)格?

【答案】
(1)100
(2)解:用水15~20噸的戶數(shù):100﹣10﹣36﹣24﹣8=22(戶)

∴補(bǔ)充圖如下:

“15噸~20噸”部分的圓心角的度數(shù)=360°× =79.2°

答:扇形圖中“15噸~20噸”部分的圓心角的度數(shù)為79.2°


(3)解:6× =4.08(萬戶)

答:該地區(qū)6萬用戶中約有4.08萬用戶的用水全部享受基本價(jià)格


【解析】解:(1)∵10÷10%=100(戶) ∴樣本容量是100,
故答案為:100;
(1)根據(jù)10~15噸部分的用戶數(shù)和百分比進(jìn)行計(jì)算;(2)先根據(jù)頻數(shù)分布直方圖中的數(shù)據(jù),求得“15噸~20噸”部分的用戶數(shù),再畫圖,最后根據(jù)該部分的用戶數(shù)計(jì)算圓心角的度數(shù);(3)根據(jù)用水25噸以內(nèi)的用戶數(shù)的占比,求得該地區(qū)6萬用戶中用水全部享受基本價(jià)格的戶數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=∠COD=90°,∠BOC=34°.

(1)判斷BOC與AOD之間的數(shù)量關(guān)系,并說明理由;

(2)若OE平分AOC,求EOC的余角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)經(jīng)濟(jì)的快速發(fā)展讓眾多國(guó)家感受到了威脅,隨著釣魚島事件、南海危機(jī)、薩德入韓等一系列事件的發(fā)生,國(guó)家安全一再受到威脅,所謂“國(guó)家興亡,匹夫有責(zé)”,某校積極開展國(guó)防知識(shí)教育,九年級(jí)甲、乙兩班分別選5名同學(xué)參加“國(guó)防知識(shí)”比賽,其預(yù)賽成績(jī)?nèi)鐖D所示:

根據(jù)上圖填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

甲班

______

______

乙班

______

10

根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪個(gè)班的成績(jī)較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)若對(duì)于平面內(nèi)一點(diǎn)C,當(dāng)是以AB為腰的等腰三角形時(shí),稱點(diǎn)C時(shí)線段AB等長(zhǎng)點(diǎn)”.

請(qǐng)判斷點(diǎn),點(diǎn)是否是線段AB等長(zhǎng)點(diǎn),并說明理由;

若點(diǎn)是線段AB等長(zhǎng)點(diǎn),且,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題的提出:如果點(diǎn)P是銳角內(nèi)一動(dòng)點(diǎn),如何確定一個(gè)位置,使點(diǎn)P的三頂點(diǎn)的距離之和的值為最小?

問題的轉(zhuǎn)化:把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,連接,這樣就把確定的最小值的問題轉(zhuǎn)化成確定的最小值的問題了,請(qǐng)你利用圖1證明:;

問題的解決:當(dāng)點(diǎn)P到銳角的三頂點(diǎn)的距離之和的值為最小時(shí),求的度數(shù);

問題的延伸:如圖2是有一個(gè)銳角為的直角三角形,如果斜邊為2,點(diǎn)P是這個(gè)三角形內(nèi)一動(dòng)點(diǎn),請(qǐng)你利用以上方法,求點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級(jí)380名師生秋游,計(jì)劃租用7輛客車,現(xiàn)有甲、乙兩種型號(hào)客車,它們的載客量和租金如表.

甲種客車

乙種客車

載客量(座/輛)

60

45

租金(元/輛)

550

450


(1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;
(2)當(dāng)甲種客車有多少輛時(shí),能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段MN=3cm,在線段MN上取一點(diǎn)P,使PMPN;延長(zhǎng)線段MN到點(diǎn)A,使ANMN;延長(zhǎng)線段NM到點(diǎn)B,使BN=3BM.

(1)根據(jù)題意,畫出圖形;

(2)求線段AB的長(zhǎng);

(3)試說明點(diǎn)P是哪些線段的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:如圖,ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)OEF垂直于BDAB,CD分別于點(diǎn)F,E,連接DF,請(qǐng)根據(jù)上述條件,寫出一個(gè)正確結(jié)論其中四位同學(xué)寫出的結(jié)論如下:

小青:;小何:四邊形DFBE是正方形;

小夏:;小雨:

這四位同學(xué)寫出的結(jié)論中不正確的是  

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示.

(1)在橫線上填上“>”“=”“<”:

a 0,a-b 0,.

(2)在數(shù)軸上標(biāo)出表示有理數(shù)-a,-b,-c的點(diǎn);

(3)用“>”a,b,c,-a,-b,-c連接起來.

查看答案和解析>>

同步練習(xí)冊(cè)答案