【題目】下列計算正確的是(  )
A.a5+a5=a10
B.﹣a6(﹣a)4=a10
C.(﹣bc)4÷(﹣bc)2=b2c2
D.(﹣ab)2a=﹣a3b2

【答案】C
【解析】解:A、原式=2a5 , 錯誤;
B、原式=﹣a10 , 錯誤;
C、原式=b2c2 , 正確;
D、原式=a3b2 , 錯誤,
故選C
A、原式合并同類項得到結(jié)果,即可做出判斷;
B、原式利用冪的乘方及單項式乘以單項式法則計算得到結(jié)果,即可做出判斷;
C、原式利用同底數(shù)冪的除法法則計算得到結(jié)果,即可做出判斷;
D、原式利用積的乘方運算法則計算得到結(jié)果,即可做出判斷.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD交于點O,△AOD是正三角形,AD=4,則平行四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】①如圖1:A、B是兩個蓄水池,都在河流a的同側(cè),為了方便灌溉作物,要在河邊建一個抽水站,將河水送到A、B兩地,問該站建在河邊什么地方,可使所修的渠道最短,試在圖中確定該點的位置(保留作圖痕跡).
②如圖2:某地有兩個工廠M、N和兩條相交叉的公路a,b現(xiàn)計劃修建一座物資倉庫,希望倉庫到兩個工廠的距離相等,到兩條公路的距離也相等.你能確定倉庫應該建在什么位置嗎?在所給的圖形中畫出你的設(shè)計方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:2x3﹣8x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于點E,DF⊥AC于點F,△ABC的面積是28cm2 , AB=16cm,AC=12cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A.3a+2a=5a2
B.a2a3=a6
C.(a+b)(a﹣b)=a2﹣b2
D.(a+b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線PQ∥MN,點A在直線PQ上,點C、D在直線MN上,連接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于E.
(1)求∠AEC的度數(shù);
(2)若將圖1中的線段AD沿MN向右平移到A1D1如圖2所示位置,此時A1E平分∠AA1D1 , CE平分∠ACD1 , A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù).
(3)若將圖1中的線段AD沿MN向左平移到A1D1如圖3所示位置,其他條件與(2)相同,求此時∠A1EC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是( .

A.等弧對等弦;B.在同圓中,相等的弦所對的圓周角相等;

C.平分弦的直徑垂直于弦;D.經(jīng)過切點的直線是圓的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對于一個點與等邊三角形,給出如下定義:滿足rdR的點叫做等邊三角形的中心關(guān)聯(lián)點.在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知點D(2,2),E,1),F,﹣1).在D,EF中,是等邊△ABC的中心關(guān)聯(lián)點的是

(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°.

①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點Pmn),求m的取值范圍;

②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b總存在等邊△ABC的中心關(guān)聯(lián)點;(直接寫出答案,不需過程)

(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為.當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案