【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,則正方形的邊長為_____.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=4,AC=3,D為AB邊上一動點(點D與點A、B不重合),聯(lián)結(jié)CD,過點D作DE⊥DC交邊BC于點E.
(1)如圖,當ED=EB時,求AD的長;
(2)設(shè)AD=x,BE=y,求y關(guān)于x的函數(shù)解析式并寫出函數(shù)定義域;
(3)把△BCD沿直線CD翻折得△CDB',聯(lián)結(jié)AB',當△CAB'是等腰三角形時,直接寫出AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于兩點,與軸交于點,且,.
(1)求拋物線的表達式;
(2)點是拋物線上一點.
①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標;
②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=AB,把△ABC繞點A順時針旋轉(zhuǎn)得到△ADE(點B、C分別對應(yīng)點D、E),BD和CE交于點F.
(1)求證:CE=BD;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是平行四邊形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)(k>0)的圖像交于A,B兩點,過點A做x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計步行時間提前了3 分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形 ABCD 內(nèi)接于⊙O,連接 AC、BD,∠BAD+2∠ACB=180°.
(1)如圖 1,求證:點 A 為弧 BD 的中點;
(2)如圖 2,點 E 為弦 BD 上一點,延長 BA 至點 F,使得 AF=AB,連接 FE 交 AD 于點 P,過點 P 作 PH⊥AF 于點 H,AF=2AH+AP,求證:AH:AB=PE:BE;
(3)在(2)的條件下,如圖 3,連接 AE,并延長 AE 交⊙O 于點 M,連接 CM,并延長 CM 交 AD 的延長線于點 N,連接 FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求 AH 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1,拋物線過三點,頂點為點,連接,點為拋物線對稱軸上一點,連接,直線過點兩點.
(1)求拋物線及直線的函數(shù)解析式;
(2)求的最小值;
(3)求證:∽;
(4)如圖2,若點是在拋物線上且位于第一象限內(nèi)的一動點,請直接寫出面積的最大值及此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內(nèi),點O在坐標原點,已知點A(3,1)、B(2,0)、C(4,﹣2).
(1)求證:△AOB∽△OCB;
(2)求∠AOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com