【題目】如圖,已知點A在第一象限,點C的坐標為(10),△AOC是等邊三角形,現(xiàn)把△AOC按如下規(guī)律進行旋轉(zhuǎn):第1次旋轉(zhuǎn),把△AOC繞點C按順時針方向旋轉(zhuǎn)120°后得到△A1O1C,點A1、O1分別是點AO的對應點,第2次旋轉(zhuǎn),把△A1O1C繞著點A1按順時針方向旋轉(zhuǎn)120°后得到△A1O2C1,點O2C1分別是點O1、C的對應點,第3次旋轉(zhuǎn),把△A1O2C1繞著點O2按順時針方向旋轉(zhuǎn)120°后得到△A2O2C2,點A2、C2分別是點A1、C1的對應點,……,依此規(guī)律,第6次旋轉(zhuǎn),把△A3O4C3繞著點O4按順時針方向旋轉(zhuǎn)120°后得到△A4O4C4,點A4、C4分別是點A3、C3的對應點,則點A4的坐標是( 。

A.B.6,0C.,D.7,0

【答案】A

【解析】

分別求出A1A2,A3,A4的坐標即可判斷.

由題意A120),A2,),A35),A4),

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市去年成功舉辦2018郴州國際休閑旅游文化節(jié),獲評“全國森林旅游示范市”.某市有A,B,CD,E五個景區(qū)很受游客喜愛.一旅行社對某小區(qū)居民在暑假期間去以上五個景區(qū)旅游(只選一個景區(qū))的意向做了一次隨機調(diào)查統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了如下兩幅不完整的統(tǒng)計圖:

1)該小區(qū)居民在這次隨機調(diào)查中被調(diào)查到的人數(shù)是   人,   ,并補全條形統(tǒng)計圖;

2)若該小區(qū)有居民1200人,試估計去B地旅游的居民約有多少人?

3)小軍同學已去過E地旅游,暑假期間計劃與父母從A,BC,D四個景區(qū)中,任選兩個去旅游,求選到AC兩個景區(qū)的概率.(要求畫樹狀圖或列表求概率)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),求Wx之間的函數(shù)表達式(利潤=收入﹣成本);并求出售價為多少元時獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.

(1)學生小紅計劃選修兩門課程,請寫出所有可能的選法;

(2)若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,對角線交于點上任意點,中點,則的最小值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,B是邊AD上一點,以AB為直徑的經(jīng)過點PC上一動點,連接AC,PC,PCAB于點E,且

1)求證:PD的切線;

2)連接OP,PBBC,OC,若的直徑是4,則:

①當四邊形APBC是矩形時,求DE的長;

②當______時,四邊形OPBC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】碑林書法社小組用的書法練習紙(毛邊紙可以到甲商店購買,也可以到乙商店購買已知兩商店的標價都是每刀20元(每刀100張),但甲商店的優(yōu)惠條件是:若購買不超過10刀,則按標價買,購買10以上,從第11刀開始按標價的七折賣;乙商店的優(yōu)惠條件是:購買一只9元的毛筆,從第一刀開始按標價的八五折賣.購買刀數(shù)為(刀),在甲商店購買所需費用為元,在乙商店購買所需費用為元.

1)寫出之間的函數(shù)關系式.

2)求在乙商店購買所需總費用小于甲商店購買所需總費用時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若干同樣的正五邊形排成環(huán)狀,圖中所示的前3個正五邊形,要完成這一圓環(huán)還需_____個正五邊形,若將同樣的正六邊形排成環(huán)狀,則需____個正六邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的頂點的坐標為

(1),的值;

(2)已知點為拋物線上異于的一點,且點橫、縱坐標相等,軸上任意一點,當取最小值時,求出點坐標和此時的面積.

查看答案和解析>>

同步練習冊答案