【題目】如圖,在正方形ABCD中,點E在AB邊上,點F在BC邊的延長線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時針方向至少旋轉多少度才能與△CFD重合,旋轉中心是什么?
【答案】
(1)解:∵四邊形ABCD是正方形,
∴AD=CD,∠A=∠DCB=∠ADC=90°,
∴∠A=∠DCF=90°.
在△AED和△CFD中,
,
∴△AED≌△CFD(SAS)
(2)解:∵∠ADC=90°,
∴△AED按逆時針方向至少旋轉90度才能與△CFD重合,旋轉中心是點D
【解析】(1)由正方形的性質就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出結論;(2)由∠ADC=90°就可以得出△AED按逆時針方向至少旋轉90度才能與△CFD重合,旋轉中心是點D.
【考點精析】根據題目的已知條件,利用正方形的性質和旋轉的性質的相關知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉過程中,當∠OAG′是直角時,求α的度數;
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.哥哥的身高比弟弟高是必然事件
B.今年中秋節(jié)有雨是不確定事件
C.隨機拋一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D.“彩票中獎的概率為 ”表示買5張彩票肯定會中獎
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某水上樂園有一個滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°
(1)求調整后的滑梯AD的長度;
(2)調整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數據: ≈1.41, , ≈2.45)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】網絡購物越來越方便快捷,遠方的朋友通過網購就可以迅速品嘗到茂名的新鮮荔枝,同時也增加了種植戶的收入,種植戶老張去年將全部荔枝按批發(fā)價賣給水果商,收入6萬元,今年的荔枝產量比去年增加2000千克,計劃全部采用互聯網銷售,網上銷售比去年的批發(fā)價高50%,若按此價格售完,今年的收入將達到10.8萬元.
(1)去年的批發(fā)價和今年網上售價分別是多少?
(2)若今年老張按(1)中的網上售價銷售,則每天的銷量相同,20天恰好可將荔枝售完,經調查發(fā)現,當網上售價每上升0.1元/千克,每日銷量將減少5千克,將網上售價定為多少,才能使日銷量收入最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個根,則實數x1 , x2 , a,b的大小關系為( )
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com