【題目】拋物線軸交于點(diǎn)(0,3)

1)求的值及拋物線與軸的交點(diǎn)坐標(biāo);

2取什么值時(shí),拋物線在軸下方?

3取什么值時(shí),的值隨著的增大而增大?

【答案】13, (-1,0),(30);(2x<-1x3;(3)

【解析】

1)將點(diǎn)代入二次函數(shù)的解析式可求出m的值,然后可得二次函數(shù)的解析式,再令即可求出拋物線與軸的交點(diǎn)坐標(biāo);

2)根據(jù)二次函數(shù)的圖象和拋物線與軸的交點(diǎn)坐標(biāo)即可得;

3)將二次函數(shù)的解析式化為頂點(diǎn)式,得出其增減性即可得.

1)將點(diǎn)代入得:

則二次函數(shù)的解析式為

得:

解得

則拋物線與軸的交點(diǎn)坐標(biāo)為,;

2)二次函數(shù)的開(kāi)口向下

結(jié)合(1)可得:當(dāng)時(shí),拋物線在軸下方;

3)二次函數(shù)的頂點(diǎn)式為

二次函數(shù)的增減性為:當(dāng)時(shí),yx的增大而增大;當(dāng)時(shí),yx的增大而減小

則當(dāng)時(shí),的值隨著的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對(duì)稱軸和頂點(diǎn)坐標(biāo).

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L(zhǎng)2

直接寫出y隨x的增大而增大時(shí)x的取值范圍;

直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省某工廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本每件20元的工藝品,投放市場(chǎng)試銷后發(fā)現(xiàn)銷售量y(件)是售價(jià)x(/)的一次函數(shù),當(dāng)售價(jià)為23/件時(shí),每天銷售量為790件;當(dāng)售價(jià)為25/件,每天銷售量為750.

1)求yx的函數(shù)關(guān)系;

2)如果該工藝品最高不超過(guò)每件30元,那么售價(jià)定位每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2+bx+ca≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0)

1)求拋物線的解析式;

2)如圖2,點(diǎn)P為直線BD上方拋物線上一點(diǎn),若,請(qǐng)求出點(diǎn)P的坐標(biāo).

3)如圖3M為線段AB上的一點(diǎn),過(guò)點(diǎn)MMNBD,交線段AD于點(diǎn)N,連接MD,若DNM∽△BMD,請(qǐng)求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校要舉辦一次演講比賽,每班只能選一人參加比賽.但八年級(jí)一班共有甲、乙兩人的演講水平相不相上下,現(xiàn)要在他們兩人中選一人去參加全校的演講比賽,經(jīng)班主任與全班同學(xué)協(xié)商決定用摸小球的游戲來(lái)確定誰(shuí)去參賽(勝者參賽).

游戲規(guī)則如下:在兩個(gè)不透明的盒子中,一個(gè)盒子里放著兩個(gè)紅球,一個(gè)白球;另一個(gè)盒子里放著三個(gè)白球,一個(gè)紅球,從兩個(gè)盒子中各摸一個(gè)球,若摸得的兩個(gè)球都是紅球,甲勝;摸得的兩個(gè)球都是白球,乙勝,否則,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負(fù)為止.

根據(jù)上述規(guī)則回答下列問(wèn)題:

(1)從兩個(gè)盒子各摸出一個(gè)球,一個(gè)球?yàn)榘浊,一個(gè)球?yàn)榧t球的概率是多少?

(2)該游戲公平嗎?請(qǐng)用列表或樹(shù)狀圖等方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,RtAOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將RtAOB繞著直角頂點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到COD,已知一拋物線經(jīng)過(guò)C、DB三點(diǎn).

1)該拋物線的解析式為  ;

2)設(shè)點(diǎn)E是拋物線上位于第一象限的動(dòng)點(diǎn),過(guò)點(diǎn)EEFx軸于點(diǎn)F,并交直線ABN,過(guò)點(diǎn)E再作EMAB于點(diǎn)M,求EMN周長(zhǎng)的最大值;

3)當(dāng)EMN的周長(zhǎng)最大時(shí),在直線EF上是否存在點(diǎn)Q,使得QCD是以CD為直角邊的直角三角形?若存在請(qǐng)求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y[

1)求出yx的函數(shù)關(guān)系式;

2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?

3)該商品在銷售過(guò)程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】OAB在第一象限中,OAABOAAB,O是坐標(biāo)原點(diǎn),且函數(shù)y正好過(guò)A,B兩點(diǎn),BEx軸于E點(diǎn),則OE2BE2的值為( 。

A. 3B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案