【題目】如圖,在四邊形中,,,于點,,則

A.B.C.2D.3

【答案】A

【解析】

如圖,連接AC,作CFABF,CEADAD的延長線于E.證明△CED≌△CFBAAS),RtACERtACFHL),利用全等三角形的性質(zhì)解決問題即可.

如圖,連接AC,作CEADAD的延長線于E

∵∠B60,∠ADC120,

∴∠DAB+∠DCB180,

∵∠E+∠CFA180

∴∠EAF+∠ECF180,

∴∠ECF=∠DCB

∴∠DCE=∠BCF,

∵∠E=∠CFB90,CDCB

∴△CED≌△CFBAAS),

CECFDEBF,

ACACCECF

RtACERtACFHL),

AEAF,

AE-ADDEBF=,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題探究】

)如圖①,點是正上的一定點,請在上找一點,使,并說明理由.

)如圖②,點是邊長為的正上的一動點,求的最小值.

【問題解決】

)如圖③,、兩地相距, 是筆直第沿東西方向向兩邊延伸的一條鐵路.今計劃在鐵路線上修一個中轉(zhuǎn)站,再在間修一條筆直的公路.如果同樣的物資在每千米公路上的運費是鐵路上的兩倍.那么,為使通過鐵路由再通過公路由的總運費達到最小值,請確定中轉(zhuǎn)站\的位置,并求出的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個四邊形的兩條對角線相等且相互垂直,則稱這個四邊形為“等垂四邊形”.

如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為“等垂四邊形.根據(jù)等垂四邊形對角線互相垂直的特征可得等垂四邊形的一個重要性質(zhì):等垂四邊形的面積等于兩條對角線乘積的一半.根據(jù)以上信息解答下列問題:

(1)矩形   “等垂四邊形”(填“是”或“不是”);

(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,若⊙O的半徑為6,∠ADC=60°,求四邊形ABCD的面積;

(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,作OM⊥AD于M.請猜想OM與BC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個.

⑴先從袋中取出mm>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為_______,若A為隨機事件,則m的取值為______;

⑵若從袋中隨機摸出2個球,正好紅球、黑球各1個,用列表法與樹狀圖法求這個事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;AD=BC;kx+b﹣ <0的解集為0<x<1x>3;④△AOB的面積是8,其中正確結(jié)論的個數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,于點平分

1)若,,求的度數(shù);

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:

向上點數(shù)

1

2

3

4

5

6

出現(xiàn)次數(shù)

8

10

7

9

16

10

(1)計算出現(xiàn)向上點數(shù)為6的頻率.

(2)丙說:如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.請判斷丙的說法是否正確并說明理由.

(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過 P MNAB AC M,交 BC N,且 AM8BN5,則 MN=(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+4的圖象l1分別與xy軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點Cm3),過動點Mn,0)作x軸的垂線與直線l1l2分別交于P、Q兩點.

1)求m的值及l2的函數(shù)表達式;

2)當(dāng)PQ≤4時,求n的取值范圍;

3)是否存在點P,使SOPC2SOBC?若存在,求出此時點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案