【題目】如圖所示,點B和點C分別為∠MAN兩邊上的點,AB=AC.
(1)按下列語句畫出圖形:
①AD⊥BC,垂足為D;
②∠BCN的平分線CE與AD的延長線交于點E;
③連接BE.
(2)在完成(1)后不添加線段和字母的情況下,請你寫出除△ABD≌△ACD外的兩對全等三角形: ≌ , ≌ ;并選擇其中的一對全等三角形,予以證明.
【答案】(1)見解析;(2)△BDE≌△CDE(SAS).見解析
【解析】
試題分析:(1)①從A作AD⊥BC,垂足為D,D在線段BC上;
②作∠BCN的平分線CE與AD的延長線交于點E,E在線段AD的延長線上;
③連接BE就是過B、E兩點畫線段;
(2)還有△ABE≌△ACE;△BDE≌△CDE.其中證明△ABE≌△ACE的條件有AB=AC、∠BAE=∠CAE、AE公共,由此即可證明;證明△BDE≌△CDE的全等條件有,由此即可證明結(jié)論.
解:(1)①②③,如圖所示:
(2)△ABE≌△ACE,△BDE≌△CDE.
(3)選擇△ABE≌△ACE進行證明.
∵AB=AC,AD⊥BC,
∴∠BAE=∠CAE,
在△ABE和△ACE中
∴△ABE≌△ACE(SAS);
選擇△BDE≌△CDE進行證明.
∵AB=AC,AD⊥BC,
∴BD=CD,
在△BDE和△CDE中,
∴△BDE≌△CDE(SAS).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠DAB=60°,點E、F分別在CD、AB的延長線上,且AE=AD,CF=CB.
(1)求證:四邊形AFCE是平行四邊形;
(2)若去掉已知條件的“∠DAB=60°”,上述的結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有若干個紅、黃、藍、綠四種顏色的小球,小球除顏色外完全相同,為估計該口袋中四種顏色的小球數(shù)量,每次從口袋中隨機摸出一球記下顏色并放回,重復多次試驗,匯總實驗結(jié)果繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)求實驗總次數(shù),并補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,摸到黃色小球次數(shù)所在扇形的圓心角度數(shù)為多少度?
(3)已知該口袋中有10個紅球,請你根據(jù)實驗結(jié)果估計口袋中綠球的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標系原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點O順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標為( )
A.(﹣,) B.(,﹣)
C.(2,﹣2) D.(,﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列條件之一能使平行四邊形ABCD是菱形的為( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A.①③ B.②③ C.③④ D.①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com