【題目】如圖所示,△ABC與點(diǎn)O在10×10的網(wǎng)格中的位置如圖所示
(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的圖形;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°后的圖形;
(3)若⊙M能蓋住△ABC,則⊙M的半徑最小值為 .
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出點(diǎn)A、B、C的對應(yīng)點(diǎn)A′、B′、C′,于是可得到△A′B′C′;
(2)利用網(wǎng)格特點(diǎn)和中心對稱的性質(zhì)畫出點(diǎn)A、B、C的對應(yīng)點(diǎn)A″、B″、C″,于是可得到△A″B″C″;
(3)以AC為直徑的圓為能蓋住△ABC的最小圓,然后利用勾股定理計(jì)算出AC即可.
解:(1)如圖,△A′B′C′為所作;
(2)如圖,△A″B″C″為所求;
(3)如圖,當(dāng)點(diǎn)M為AC的中點(diǎn)時(shí),此時(shí)⊙M是能蓋住△ABC的最小的圓,
∵AB=,
∴⊙M的半徑為.
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線過點(diǎn),頂點(diǎn)為M,與x軸交于AB兩點(diǎn),D為AB的中點(diǎn),軸,交拋物線于點(diǎn)E,下列結(jié)論中正確的是( )
A.拋物線的對稱軸是直線x=-3B.
C.D.四邊形ADEC是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用周長為米的籬笆圍成.已知墻長米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長為米.
(1)若苗圃園的面積為平方米,求的值;
(2)若平行于墻的一邊長不小于米,這個(gè)苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,過作于,交于,過作于,交于,連結(jié)、.
求證:;
當(dāng)四邊形滿足什么條件時(shí),四邊形是菱形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;
(3)在運(yùn)動過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC的兩直角邊的長分別為6cm和8cm,則它的外接圓的半徑與內(nèi)切圓半徑的比為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,,分別交直線、于點(diǎn)、.
(1)如圖1,當(dāng)時(shí),求證:;
(2)如圖2,當(dāng)時(shí),線段、、之間有何數(shù)量關(guān)系,證明你的結(jié)論;
(3)如圖3,當(dāng)時(shí),旋轉(zhuǎn),問線段之間、、有何數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣2與x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當(dāng)點(diǎn)B落在直線y=x﹣2上時(shí),則△OAB平移的距離是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com