【題目】某區(qū)教研部門(mén)對(duì)本區(qū)初二年級(jí)的學(xué)生進(jìn)行了一次隨機(jī)抽樣問(wèn)卷調(diào)查,其中有這樣一個(gè)問(wèn)題:
老師在課堂上放手讓學(xué)生提問(wèn)和表達(dá), 
A.從不 B.很少 C.有時(shí) D.常常 E.總是
答題的學(xué)生在這五個(gè)選項(xiàng)中只能選擇一項(xiàng).如圖是根據(jù)學(xué)生對(duì)該問(wèn)題的答卷情況繪制的兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問(wèn)題:
(1)該區(qū)共有 名初二年級(jí)的學(xué)生參加了本次問(wèn)卷調(diào)查
(2)請(qǐng)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整
(3)在扇形統(tǒng)計(jì)圖中,“總是”所占的百分比為

【答案】
(1)3200
(2)

“有時(shí)”的人數(shù)=3200﹣96﹣320﹣736﹣1344=704;

如圖所示:


(3)42%
【解析】(1)96÷3%=3200,
故答案為:3200;
(3)“總是”所占的百分比=100%=100%=42%,
故答案為:42%.
(1)結(jié)合兩個(gè)統(tǒng)計(jì)圖中的“從不”的人數(shù)與所占百分比即可求出初二年級(jí)的學(xué)生參加數(shù)量;
(2)用總?cè)藬?shù)分別減去“從不”、“很少”、“常!、“總是”的人數(shù),計(jì)算出“有時(shí)”的人數(shù)即可將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)利用公式“總是”所占的百分比=100%計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,紙片ABCD中,AD=5,SABCD=15,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D。

(1)如圖1,紙片ABCD中,AD=5,SABCD=15,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為 ( )
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點(diǎn)F,使EF=4,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
①求證:四邊形AFF′D是菱形.
②求四邊形AFF′D的兩條對(duì)角線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2的對(duì)稱(chēng)軸繞著點(diǎn)P(0,2)順時(shí)針旋轉(zhuǎn)45°后與該拋物線交于A、B兩點(diǎn),點(diǎn)Q是該拋物線上一點(diǎn).

(1)求直線AB的函數(shù)表達(dá)式。
(2)如圖①,若點(diǎn)Q在直線AB的下方,求點(diǎn)Q到直線AB的距離的最大值
(3)如圖②,若點(diǎn)Q在y軸左側(cè),且點(diǎn)T(0,t)(t<2)是射線PO上一點(diǎn),當(dāng)以P、B、Q為頂點(diǎn)的三角形與△PAT相似時(shí),求所有滿足條件的t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC=AD,且AD∥BC,求證:∠C=2∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長(zhǎng)等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是(  )

A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為8cm,E、F、G、H分別是AB、BC、CD、DA上的動(dòng)點(diǎn),且AE=BF=CG=DH.

(1)求證:四邊形EFGH是正方形
(2)判斷直線EG是否經(jīng)過(guò)一個(gè)定點(diǎn),并說(shuō)明理由
(3)求四邊形EFGH面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD、PO.

(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為
②連接OD,當(dāng)∠PBA的度數(shù)為時(shí),四邊形BPDO是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案