用配方法解下列關(guān)于x的方程:
(1)2x2-數(shù)學(xué)公式x-30=0;
(2)x2+2=2數(shù)學(xué)公式x;
(3)x2+px+q=O(p2-4q≥O);
(4)m2x2-28=3mx(m≠O).

解:(1)2x2-x-30=0,
2x2-x=30,
x2-x=15,
x2-x+=15
(x-2=;
x-,
x1==3,x2=-=-;

(2)x2+2=2x,
x2-2x=-2,
x2-2x+3=-2+3;
(x-2=1,
x-=±1,
x1=1+,x2=-1+;

(3)x2+px+q=O(p2-4q≥O),
x2+px=-q,
x2+px+=-q+,
(x+2=
∵p2-4q≥O,
∴x+
∴x1=,x2=

(4)m2x2-28=3mx(m≠O),
(mx)2-3mx-28=0,
(mx-7)(mx+4)=0,
mx=7或mx=-4,
∵m≠0,
∴x1=,x2=
分析:(1)先移項,再把二次項系數(shù)化為1,再進(jìn)行配方,方程左右兩邊同時加上一次項系數(shù)一半的平方,變形成左邊是完全平方,右邊是常數(shù)的形式,即可求出x的值;
(2)先移項,再進(jìn)行配方,方程左右兩邊同時加上一次項系數(shù)一半的平方,變形成左邊是完全平方,右邊是常數(shù)的形式,即可求出x的值;
(3)先移項,再進(jìn)行配方,方程左右兩邊同時加上一次項系數(shù)一半的平方,變形成左邊是完全平方,右邊是常數(shù)的形式,即可求出x的值;
(4)先移項,再把方程左邊因式分解,得到兩個一元一次方程,再進(jìn)行計算即可.
點評:此題考查了配方法解一元二次方程,掌握配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方是解題的關(guān)鍵,選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解下列關(guān)于x的方程:
(1)2x2-
2
x-30=0;
(2)x2+2=2
3
x;
(3)x2+px+q=O(p2-4q≥O);
(4)m2x2-28=3mx(m≠O).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)課外練習(xí)八年級下學(xué)期使用 題型:044

用配方法解下列關(guān)于x的方程

4x(x+3)-3=2x(x+2)+x;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)課外練習(xí)八年級下學(xué)期使用 題型:044

用配方法解下列關(guān)于x的方程

4x2-4ax-3a2=1-4a;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用配方法解下列關(guān)于x的方程:
(1)2x2-
2
x-30=0;
(2)x2+2=2
3
x;
(3)x2+px+q=O(p2-4q≥O);
(4)m2x2-28=3mx(m≠O).

查看答案和解析>>

同步練習(xí)冊答案