【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長.
【答案】
(1)證明:∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切線;
(2)證明:連接AC,如圖1所示:
∵OF⊥BC,
∴ ,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴ ,
∴CE2=EHEA;
(3)解:連接BE,如圖2所示:
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵⊙O的半徑為5,sin∠BAE= ,
∴AB=10,BE=ABsin∠BAE=10× =6,
∴EA= = =8,
∵ ,
∴BE=CE=6,
∵CE2=EHEA,
∴EH= = ,
在Rt△BEH中,BH= = = .
【解析】(1)由圓周角定理和已知條件證出∠ODB=∠ABC,再證出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切線;(2)連接AC,由垂徑定理得出 ,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,證明△CEH∽△AEC,得出對應(yīng)邊成比例 ,即可得出結(jié)論;(3)連接BE,由圓周角定理得出∠AEB=90°,由三角函數(shù)求出BE,再根據(jù)勾股定理求出EA,得出BE=CE=6,由(2)的結(jié)論求出EH,然后根據(jù)勾股定理求出BH即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)、B(3,0).
(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點,交y軸于F點,交線段BC于E點.求 的最大值;
(3)如圖2,拋物線的對稱軸與拋物線交于點P、與直線BC相交于點M,連接PB.問在直線BC下方的拋物線上是否存在點Q,使得△QMB與△PMB的面積相等?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AC>BC.
(1)尺規(guī)作圖:在AC邊上求作一點P,使PB=PC(保留作圖痕跡,不寫作法);
(2)若BC=6,∠C=30°,求△PBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.由(1)、(2)可得:線段EF與線段BD的關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點B為中心順時針旋轉(zhuǎn),使點C旋轉(zhuǎn)到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是cm2 . (結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的頂點A、B、C在小正方形的頂點上,將△ABC向下平移4個單位、再向右平移3個單位得到△A1B1C1
(1)在網(wǎng)格中畫出△A1B1C1;
(2)計算線段AC在變換到A1C1的過程中掃過區(qū)域的面積(重疊部分不重復(fù)計算).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=2m+n+2和x=m+2n時,多項式x2+4x+6的值相等,且m﹣n+2≠0,則當x=3(m+n+1)時,多項式x2+4x+6的值等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com