【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點(diǎn)A(0,1)和點(diǎn)B(3,﹣2),交x軸于點(diǎn)C,頂點(diǎn)為點(diǎn)F,點(diǎn)D是該拋物線上一點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,若點(diǎn)D在直線AB上方的拋物線上,求△DAB的面積最大時點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)D在對稱軸左側(cè)的拋物線上,且點(diǎn)E(1,t)是射線CF上一點(diǎn),當(dāng)以C、B、D為頂點(diǎn)的三角形與△CAE相似時,求所有滿足條件的t的值.
【答案】(1)y=﹣x2+2x+1;(2);(3)t=1或t=2或或
【解析】
(1)將點(diǎn)A(0,1)和點(diǎn)B(3,-2)代入拋物物線y=-x2+bx+c中,列出方程組即可解答;
(2)過點(diǎn)D作 DM∥y軸交AB于點(diǎn)M,D(a,-a2+2a+1),則M(a,-a+1),表達(dá)出DM,進(jìn)而表達(dá)出△ABD的面積,利用二次函數(shù)的性質(zhì)得出最大值及D點(diǎn)坐標(biāo);
(3)由題意可知,∠ACE=∠ACO=45°,則△BCD中必有一個內(nèi)角為45°,有兩種情況:①若∠CBD=45°,得出△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,再対△ACE進(jìn)行分類討i論;②若∠CDB=45,根括圓的性質(zhì)確定D1的位置,求出D1的坐標(biāo),再對△ACE與△CD1B相似分類討論.
解:(1)將點(diǎn)A(0,1)和點(diǎn)B(3,﹣2)代入拋物物線y=﹣x2+bx+c中
得,
解得
∴y=﹣x2+2x+1;
(2)如圖1所示:過點(diǎn)D作 DM∥y軸交AB于點(diǎn)M,
設(shè)D(a,﹣a2+2a+1),則M(a,﹣a+1)
.∴DM=﹣a2+2a+1﹣(﹣a+1)=﹣a2+3a
∴
∵,有最大值,
當(dāng)時,
此時
圖1
(3)∵OA=OC,如圖2,CF∥y軸,
∴∠ACE=∠ACO=45°,
∴△BCD中必有一個內(nèi)角為45°,由題意可知,∠BCD不可能為45°,
①若∠CBD=45°,則BD∥x軸,
∴點(diǎn)D與點(diǎn)B于拋物線的対稱軸直線x=1対稱,設(shè)BD與直線=1交于點(diǎn)H,則H(1,﹣2)
B(3,﹣2),D(﹣1,﹣2)
此時△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,
(i)當(dāng)∠AEC=90°/span>時,得到AE=CE=1,
∴E(1.1),得到t=1
(ii)當(dāng)∠CAE=90時,得到:AC=AE=,
∴CE=2,∴E(1.2),得到t=2
圖2
②若∠CDB=45°,如圖3,①中的情況是其中一種,答案同上
以點(diǎn)H為圓心,HB為半徑作圓,則點(diǎn)B、C、D都在圓H上,
設(shè)圓H與對稱左側(cè)的物線交于另一點(diǎn)D1,
則∠CD1B=∠CDB=45°(同弧所對的圓周角相等),即D1也符合題意
設(shè)
由HD1=DH=2
解得n1=﹣1(含去),n2=3(舍去),(舍去),
∴,
則,
(i)若△ACE∽△CD1B,
則,
即,
解得,(舍去)
(ii)△ACE∽△BD1C則,
即,
解得,(舍去)
綜上所述:所有滿足條件的t的值為t=1或t=2或或
圖3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個工程隊共同參與一項(xiàng)筑路工程,甲隊單獨(dú)施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨(dú)完成全部工程比乙隊單獨(dú)完成全部工程多用2個月,設(shè)甲隊單獨(dú)完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線﹔與軸交于點(diǎn),拋物線的頂點(diǎn)為,直線.
(1)當(dāng)時,畫出直線和拋物線,并直接寫出直線被拋物線截得的線段長.
(2)隨著取值的變化,判斷點(diǎn)是否都在直線上并說明理由.
(3)若直線被拋物線截得的線段長不小于3,結(jié)合函數(shù)的圖像,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技發(fā)展,社會進(jìn)步,中國已進(jìn)入特色社會主義新時代,為實(shí)現(xiàn)“兩個一百年”奮斗目標(biāo)和中華民族偉大復(fù)興的中國夢,需要人人奮斗,青少年時期是良好品格形成和知識積累的黃金時期,為此,大數(shù)據(jù)平臺針對部分中學(xué)生品格表現(xiàn)和學(xué)習(xí)狀況進(jìn)行調(diào)查統(tǒng)計繪制如下統(tǒng)計圖表,請根據(jù)圖中提供的信息解決下列問題,類別:品格健全,成績優(yōu)異;尊敬師長,積極進(jìn);自控力差,被動學(xué)習(xí);沉迷奢玩,消極自卑.
(1)本次調(diào)查被抽取的樣本容量為 ;
(2)“自控力差,被動學(xué)習(xí)”的同學(xué)有 人,并補(bǔ)全條形統(tǒng)計圖;
(3)樣本中類所在扇形的圓心角為 度;
(4)東至縣城內(nèi)某中學(xué)有在校學(xué)生3330人,請估算該校類學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小安填寫的數(shù)學(xué)實(shí)踐活動報告的部分內(nèi)容
題 目 | 測量鐵塔頂端到地面的高度 | |
測量目標(biāo)示意圖 | ||
相關(guān)數(shù)據(jù) | CD=20m,ɑ=45°,β=52° |
求鐵塔的高度FE(結(jié)果精確到1米)(參考數(shù)據(jù):sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)將△ABC向下平移5個單位再向右平移1個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)P(a,b)是△ABC的邊AC上一點(diǎn),請直接寫出經(jīng)過兩次變換后在△A2B2C2中對應(yīng)的點(diǎn)P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于兩點(diǎn),與反比例函數(shù)交于點(diǎn)點(diǎn)的坐標(biāo)為軸于點(diǎn).
(1)點(diǎn)的坐標(biāo)為 ;
(2)若點(diǎn)為的中點(diǎn),求反比例函數(shù)的解析式;
(3)在(2)條件下,以為邊向右作正方形交于點(diǎn)直接寫出的周長與的周長的比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)展示:
(問題)如圖1,在平面直角坐標(biāo)系中,拋物線G1:與x軸相交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,則a= ,b= .
(操作)將圖1中拋物線G1沿BC方向平移BC長度的距離得到拋物線G2,G2在y軸左側(cè)的部分與G1在y軸右側(cè)的部分組成的新圖象記為G,如圖②.請直接寫出圖象G對應(yīng)的函數(shù)解析式.
(探究)在圖2中,過點(diǎn)C作直線l平行于x軸,與圖象G交于D,E兩點(diǎn).求圖象G在直線l上方的部分對應(yīng)的函數(shù)y隨x的增大而增大時x的取值范圍.
(應(yīng)用)P是拋物線G2對稱軸上一個動點(diǎn),當(dāng)△PDE是直角三角形時,直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com