【題目】2019年元旦期間,某超市打出促銷廣告,如下表所示:
一次性所購物品的原價 | 優(yōu)惠辦法 |
不超過200元 | 沒有優(yōu)惠 |
超過200元,但不超過600元 | 全部按九折優(yōu)惠 |
超過600元 | 其中600元仍按九折優(yōu)惠,超過600元部分按8折優(yōu)惠 |
(1)小張一次性購買物品的原價為400元,則實際付款為 元;
(2)小王購物時一次性付款580元,則所購物品的原價是多少元?
(3)小趙和小李分別前往該超市購物,兩人各自所購物品的原價之和為1200元,且小李所購物品的原價高于小趙,兩人實際付款共1074元,則小趙和小李各自所購物品的原價分別是多少元?
【答案】(1)360;(2)650;(3)540,660.
【解析】
(1)因為小張一次性購買物品的原價為400元,應(yīng)按九折付款,計算即可得出答案;
(2)因為小王購物時一次性付款580元,所以原價超過600元,按超過600元的優(yōu)惠辦法計算即可得出答案;
(3)因為兩人各自所購物品的原價之和為1200元,且小李所購物品的原價高于小趙,所以小趙所購物品的原價少于600元,設(shè)小趙所購商品的價格是x元,分x200和x>200兩種情況,列出方程解出即可.
解:
(1)400×0.9=360;
(2)600×0.9=540(元),580-540=40(元),40÷0.8=50(元);600+50=650(元)
(3)設(shè)小趙所購商品的價格是x元,
①若x200,x+540+0.8(1200-x-600)=1074 解得:x=270(舍去)
②若x>200,0.9x+540+0.8(1200-x-600)=1074 解得:x=540 1200-540=660(元);
綜上所述,小趙和小李各自所購物品的原價分別是540元和660元.
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式.例如構(gòu)造圖1可以得到.請解答下列問題:
(1)仿照圖1,構(gòu)造適當?shù)膱D形得到的值;
(2)寫出圖2中所表示的數(shù)學等式;
(3)利用(2)中所得到的結(jié)論,解決下面的問題:己知,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā).設(shè)慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)題中所給信息解答以下問題:
(1)甲、乙兩地之間的距離為____km;圖中點C的實際意義為:______;慢車的速度為_______,快車的速度為______;
(2)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,以及自變量x的取值范圍;
(3)若在第一列快車與慢車相遇時,第二列快車從乙地出發(fā)駛往甲地,速度與第一列快車相同.請直接寫出第二列快車出發(fā)多長時間,與慢車相距200km.
(4)若第三列快車也從乙地出發(fā)駛往甲地,速度與第一列快車相同.如果第三列快車不能比慢車晚到,求第三列快車比慢車最多晚出發(fā)多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點H(A、H、B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)問CH是否為從村莊C到河邊的最近路?(即問:CH與AB是否垂直?)請通過計算加以說明;
(2)求原來的路線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】特例研究:如圖,等邊的邊長為8,求等邊的高.
經(jīng)驗提升:
如圖,在中,,點P為射線BC上的任一點,過點P作,,垂足分別為D、E,過點C作,垂足為補全圖形,判斷線段PD,PE,CF的數(shù)量關(guān)系,并說明理由.
綜合應(yīng)用:
如圖,在平面直角坐標系中有兩條直線:,:,若線段BC上有一點M到的距離是1,請運用中的結(jié)論求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC為6米,山坡的坡角為30°. 小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF = 1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°(結(jié)果精確到0.1).
(1)求樹AB與測角儀EF的水平距離DF的長;
(2)求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36, ≈1.73 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小晗家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.
(1)若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?
(2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com