【題目】如圖,已知正方形中,相交于點,過點作射線,點是射線上一動點,連接于點,以為一邊,作正方形,且點在正方形的內(nèi)部,連接

1)求證:;

2)設(shè),正方形的邊長為,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

3)連接,當(dāng)是等腰三角形時,求的長.

【答案】1)詳見解析;(2);(3)當(dāng)是等腰三角形時,

【解析】

1)根據(jù)正方形的性質(zhì)得到∠AOD=90°,AO=OD,∠EOH=90°,OE=OH,由全等三角形的性質(zhì)即可得到結(jié)論;

2)如圖1,過OONABN,根據(jù)等腰直角三角形的性質(zhì)得到,

根據(jù)勾股定理得到,根據(jù)平行線分線段成比例定理即可得到結(jié)論;

3)①當(dāng)AE=EG時,△AEG是等腰三角形,②當(dāng)AE=AG時,△AEG是等腰三角形,如圖2,過AAPEGP③當(dāng)GE=AG時,△AEG是等腰三角形,如圖3,過GGQAEQ,根據(jù)相似三角形的性質(zhì)或全等三角形的性質(zhì)健即可得到結(jié)論.

1)∵四邊形是正方形,

,

∵四邊形是正方形,

,

,

,

,

(2)如圖1,過O作ON⊥AB于N,

,

∵BF=x,

∴AF=4-x,

∴FN=2-x,

,

,

∵AM⊥AC,

∴AE∥OB,

,

(3)①當(dāng)AE=EG時,△AEG是等腰三角形,則AE=OE,

∵∠EAO=90°,

∴這種情況不存在;

②當(dāng)AE=AG時,△AEG是等腰三角形,

如圖2,過A作AP⊥EG于P,則AP∥OE,

∴∠PAE=∠AEO,

∴△APE∽△EAO,

,

∵AE=AG,

,,

,

解得:x=2,

②當(dāng)GE=AG時,△AEG是等腰三角形,

如圖3,過G作GQ⊥AE于Q,

∴∠GQE=∠EAO=90°,

∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,

∴∠EGQ=∠AEO,

∵GE=OE,

∴△EGQ≌△OEA(AAS),

,

,

,

∴BF=2或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:甲、乙兩地相距,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,線段和折線分別表示貨車和轎車離甲地的距離與貨車出發(fā)時間之間的函數(shù)關(guān)系,請根據(jù)圖象解答下列問題:

1)貨車的速度為___________,當(dāng)轎車到達乙地后,貨車距乙地的距離為____________千米;

2)求轎車改變速度后的函數(shù)關(guān)系式;

3)轎車到達乙地后,馬上沿原路以段速度返回,求轎車從乙地出發(fā)后多長時間再次與貨車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABC=ACB,以AC為直徑的O分別交AB、BC于點M、N,點P在AB的延長線上,且CAB=2BCP.

(1)求證:直線CP是O的切線.

(2)若BC=2,sinBCP=,求點B到AC的距離.

(3)在第(2)的條件下,求ACP的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過的頂點,若點的坐標(biāo)分別為,點的橫坐標(biāo)和縱坐標(biāo)之和為,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.了解我區(qū)居民知曉“創(chuàng)建文明城區(qū)”的情況,適合全面調(diào)查;

B.甲乙兩人跳高成績的方差分別為,說明乙的距離成績比甲穩(wěn)定;

C.一組數(shù)據(jù)2,2,34的眾數(shù)是2,中位數(shù)是2.5

D.可能性是1%的事件在一次試驗中一定不會發(fā)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗,先在公路旁選一點C,再在筆直的車道a上確定點D,使CDa,測得CD=42米,在a上點D的同側(cè)取點A、B,使∠CAD=30 o,∠CBD=45o

1)求AB的長(結(jié)果保留根號);

2)若本路段對汽車限速為60km/h,現(xiàn)測得某汽車從AB用時2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸分別相交于兩點,與反比例函數(shù)的圖象交于點,點的橫坐標(biāo)為4

1)求的值;

2)過點軸,垂足為,點是該反比例函數(shù)的圖象上一點,連接,且

①求點的坐標(biāo);

②求點到直線的距離的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通信公司實行的部分套餐資費標(biāo)準(zhǔn)如下:

套餐類型

月費

(元/月)

套餐內(nèi)包含內(nèi)容

套餐外資費

國內(nèi)數(shù)據(jù)流量(MB

國內(nèi)主叫(分鐘)

國內(nèi)流量

國內(nèi)主叫

套餐1

18

100

0

029/MB

019/分鐘

套餐2

28

100

50

套餐3

38

300

50

套餐4

48

500

50

小明每月大約使用國內(nèi)數(shù)據(jù)流量200MB,國內(nèi)主叫200分鐘,若想使每月付費最少,則他應(yīng)預(yù)定的套餐是(

A.套餐1B.套餐2C.套餐3D.套餐4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】服裝廠批發(fā)某種服裝,每件成本為65元,規(guī)定不低于10件可以批發(fā),其批發(fā)價y(元/件)與批發(fā)數(shù)量x(件)(x為正整數(shù))之間所滿足的函數(shù)關(guān)系如圖所示.

(1)求y與x之間所滿足的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)設(shè)服裝廠所獲利潤為w(元),若10≤x≤50(x為正整數(shù)),求批發(fā)該種服裝多少件時,服裝廠獲得利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案