【題目】分解因式:a3a_____

【答案】aa+1)(a1

【解析】

先提取公因式a,再對余下的多項式利用平方差公式繼續(xù)分解.

a3aaa21)=aa+1)(a1).

故答案為:aa+1)(a1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD于Q,PQ=4,PE=1.

(1)求證:∠BPQ=60°(提示:利用三角形全等、外角的性質(zhì))
(2)求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

國際比賽的足球場長在100m110m之間,寬在64m75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個長方形的足球場,其長是寬的1.5倍,面積是7560m2請你判斷這個足球場能用于國際比賽嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中O是原點,ABCD的頂點A,C的坐標(biāo)分別是(8,0),(3,4),點D,E把線段OB三等分,延長CD、CE分別交OA、AB于點F,G,連接FG.則下列結(jié)論:
①F是OA的中點;②△OFD與△BEG相似;③四邊形DEGF的面積是 ;④OD=
其中正確的結(jié)論是(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( 。

A. x+xx2B. x2x3x6C. x3÷xx2D. x23x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗探究:

(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.

(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM= AD,點N是折線AB﹣BC上的一個動點.

(1)如圖1,當(dāng)N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為
(2)當(dāng)點N在AB邊上時,將△AMN沿MN翻折得到△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為;
②當(dāng)點A′落在對角線AC上時,如圖3,求證:四邊形AM A′N是菱形;
③當(dāng)點A′落在對角線BD上時,如圖4,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,已知二次函數(shù)y=﹣x2+bx的圖象過點A(4,0),頂點為B,連接AB、BO.

(1)求二次函數(shù)的表達式;

(2)若C是BO的中點,點Q在線段AB上,設(shè)點B關(guān)于直線CQ的對稱點為B',當(dāng)△OCB'為等邊三角形時,求BQ的長度;

(3)若點D在線段BO上,OD=2DB,點E、F在△OAB的邊上,且滿足△DOF與△DEF全等,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對函數(shù)y=﹣2x+2的描述錯誤是( 。

A. y隨x的增大而減小 B. 圖象與x軸的交點坐標(biāo)為(1,0)

C. 圖象經(jīng)過第一、三、四象限 D. 圖象經(jīng)過點(3,-4)

查看答案和解析>>

同步練習(xí)冊答案