精英家教網 > 初中數學 > 題目詳情

判斷m取何值時,等式恒成立?

答案:
解析:

  不論m為何值,等式恒成立,

  ∴=1.

  ∴m=1.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,在Rt△ABC中,∠BAC=90°,∠B=45°,O為BC中點,如果點M、N分別在線段AB、AC上精英家教網移動,設AM的長為x,CN的長為y,且x、y滿足等式
x-a
+
x-y
=0(a>0).
(1)求證:BM=AN;
(2)請你判斷△OMN的形狀,并證明你的結論;
(3)求證:當OM∥AC時,無論a取何正數,△OMN與△ABC面積的比總是定值
1
4

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖(1),直線y=kx-k2(k為常數,且k>0)與y軸交于點C,與拋物線y=ax2有唯一公共點B,點B在x軸上的正投影為點E,已知點D(0,4).
(1)求拋物線的解析式;
(2)是否存在實數k,使經過D,O,E三點的圓與拋物線的交點恰好為B?若存在,請求出時k的值;若不存在,請說明理由.
(3)如圖(2),連接CE,已知點F(0,1),直線FA與CE相交于點M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個等式中有一個恒成立.請判斷哪一個恒成立,并證明這個成立的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖所示,在Rt△ABC中,∠BAC=90°,∠B=45°,O為BC中點,如果點M、N分別在線段AB、AC上移動,設AM的長為x,CN的長為y,且x、y滿足等式數學公式+數學公式=0(a>0).
(1)求證:BM=AN;
(2)請你判斷△OMN的形狀,并證明你的結論;
(3)求證:當OM∥AC時,無論a取何正數,△OMN與△ABC面積的比總是定值數學公式

查看答案和解析>>

科目:初中數學 來源:2009年浙江省寧波市奉化市中考數學模擬試卷(解析版) 題型:解答題

如圖(1),直線y=kx-k2(k為常數,且k>0)與y軸交于點C,與拋物線y=ax2有唯一公共點B,點B在x軸上的正投影為點E,已知點D(0,4).
(1)求拋物線的解析式;
(2)是否存在實數k,使經過D,O,E三點的圓與拋物線的交點恰好為B?若存在,請求出時k的值;若不存在,請說明理由.
(3)如圖(2),連接CE,已知點F(0,1),直線FA與CE相交于點M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個等式中有一個恒成立.請判斷哪一個恒成立,并證明這個成立的結論.

查看答案和解析>>

同步練習冊答案