【題目】如圖,在正方形ABCD中,△ABE經旋轉,可與△CBF重合,AE的延長線交FC于點M,以下結論正確的是( )
A.AM⊥FC
B.BF⊥CF
C.BE=CE
D.FM=MC
【答案】A
【解析】解:∵△ABE經旋轉,可與△CBF重合,
∴∠BAE=∠BCF,∠ABE=∠CBF.
∴∠BCF+∠BFC=90°.
∴∠BFC+∠BAE=90°.
∴∠FMA=90°.
∴AM⊥FC.
故選:A.
【考點精析】解答此題的關鍵在于理解正方形的性質的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對旋轉的性質的理解,了解①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數(shù)學 來源: 題型:
【題目】某海域有A,B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調查的樣本容量是 , 并補全頻數(shù)分布直方圖
(2)C組學生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.
(1)若∠AOB=60°,OM=4,OQ=1,求證:CN⊥OB
(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問:﹣的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.
②設菱形OMPQ的面積為S1 , △NOC的面積為S2 , 求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM.若AE=2,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C
(1)求A、B、C的坐標;
(2)過拋物線上一點F作y軸的平行線,與直線AC交于點G.若FG= AC,求點F的坐標;
(3)E(0,﹣2),連接BE.將△OBE繞平面內的某點逆時針旋轉90°得到△O′B′E′,O、B、E的對應點分別為O′、B′、E′.若點B′、E′兩點恰好落在拋物線上,求點B′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= 的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.
(1)求此反比例函數(shù)和一次函數(shù)的表達式;
(2)求點C的坐標及△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com