【題目】如圖,兩座建筑物的水平距離BC=30m,從A點(diǎn)測(cè)得D點(diǎn)的俯角α為30°,測(cè)得C點(diǎn)的俯角β為60°,求這兩座建筑物的高度.

【答案】解:延長(zhǎng)CD,交AE于點(diǎn)E,可得DE⊥AE,
在Rt△AED中,AE=BC=30m,∠EAD=30°,
∴ED=AEtan30°=10 m,
在Rt△ABC中,∠BAC=30°,BC=30m,
∴AB=30 m,
則CD=EC﹣ED=AB﹣ED=30 ﹣10 =20 m.

【解析】延長(zhǎng)CD,交AE于點(diǎn)E,可得DE⊥AE,在直角三角形ABC中,由題意確定出AB的長(zhǎng),進(jìn)而確定出EC的長(zhǎng),在直角三角形AED中,由題意求出ED的長(zhǎng),由EC﹣ED求出DC的長(zhǎng)即可.
【考點(diǎn)精析】本題主要考查了關(guān)于仰角俯角問(wèn)題的相關(guān)知識(shí)點(diǎn),需要掌握仰角:視線(xiàn)在水平線(xiàn)上方的角;俯角:視線(xiàn)在水平線(xiàn)下方的角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線(xiàn)CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線(xiàn)段CB上,∠BAC≠90°時(shí),請(qǐng)你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫(xiě)出此時(shí)之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)(-5.5)+(-3.2)-(-2.5)-4.8

(2)-40-28-(-19)+(-24)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)形結(jié)合"是一種重要的數(shù)學(xué)思想,觀察下面的圖形和算式.

解答下列問(wèn)題:

(1)試猜想1+3+5+7+9+…+19=______=( );

(2)試猜想,當(dāng)n是正整數(shù)時(shí),1+3+5+7+9+…+(2n-1)=

(3)請(qǐng)用(2)中得到的規(guī)律計(jì)算:19+21+23+25+27+…+99.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮一家到桃林口水庫(kù)游玩.在岸邊碼頭P處,小亮和爸爸租船到庫(kù)區(qū)游玩,媽媽在岸邊碼頭P處觀看小亮與爸爸在水面劃船,小船從P處出發(fā),沿北偏東60°方向劃行,劃行速度是20/分鐘,劃行10分鐘后到A處,接著向正南方向劃行一段時(shí)間到B處,在B處小亮觀測(cè)到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米?(精確到1m,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進(jìn)污水處理設(shè)備,新設(shè)備每小時(shí)處理污水量是原系統(tǒng)的1.5倍,原來(lái)處理1200m3污水所用的時(shí)間比現(xiàn)在多用10小時(shí).

(1)原來(lái)每小時(shí)處理污水量是多少m2?

(2)若用新設(shè)備處理污水960m3,需要多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線(xiàn)段AD及其延長(zhǎng)線(xiàn)上,且DE=DF.下列條件使四邊形BECF為菱形的是(
A.BE⊥CE
B.BF∥CE
C.BE=CF
D.AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB∥CD,直線(xiàn)MNAB,CD分別交于點(diǎn)M,N,ME,NE分別是∠AMN∠CNM的平分線(xiàn),NEAB于點(diǎn)F,過(guò)點(diǎn)NNG⊥ENAB于點(diǎn)G.

(1)求證:EM∥NG;

(2)連接EG,在GN上取一點(diǎn)H,使∠HEG=∠HGE,作∠FEH的平分線(xiàn)EPAB于點(diǎn)P,求∠PEG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如下表和圖①:

A

B

C

筆試

85

95

90

口試

80

85

(1)請(qǐng)將表格和圖①中的空缺部分補(bǔ)充完整;

(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖②(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一人),請(qǐng)計(jì)算每人的得票數(shù);

(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4∶3∶3的比確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.

查看答案和解析>>

同步練習(xí)冊(cè)答案