【題目】ABC中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動,如果P、Q分別從A、B同時出發(fā),經(jīng)幾秒后,點(diǎn)P、B、Q構(gòu)成的三角形PBQ與ABC相似?

【答案】經(jīng)過0.8秒或2秒后,兩三角形相似.

【解析】

由于兩三角形都是直角三角形,所有分兩種情況分別利用相似三角形的對應(yīng)邊成比例可得到關(guān)于t的方程,可求得答案.

解:設(shè)經(jīng)過tsPBQABC,

根據(jù)已知條件可得AP=t,BQ=2×t,

當(dāng)PBQABC時,

,

,

t=2s;

設(shè)經(jīng)過tsPBQCBA

當(dāng)PBQCBA,

,

t=0.8s,

故經(jīng)過0.8秒或2秒后,兩三角形相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADCD,ABBC2,∠B=∠D90°.若四邊形ABCD的面積為16,則AB的長為( 。

A.3B.4C.5D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場進(jìn)行試銷售.其銷售單價不低于成本,按照物價部門規(guī)定,銷售利潤率不高于90%,市場調(diào)研發(fā)現(xiàn),在一段時間內(nèi),每天銷售數(shù)量y(個)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖所示:

1)根據(jù)圖象,直接寫出yx的函數(shù)關(guān)系式;

2)該公司要想每天獲得3000元的銷售利潤,銷售單價應(yīng)定為多少元

3)銷售單價為多少元時,每天獲得的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長是5,點(diǎn)OAD上,且⊙O的直徑是4

(1)正方形的對角線BD與半圓O交于點(diǎn)F,求陰影部分的面積;

(2)利用圖判斷,半圓OAC有沒有公共點(diǎn),說明理由.(提示:1.41)

(3)將半圓O以點(diǎn)E為中心,順時針方向旋轉(zhuǎn).

旋轉(zhuǎn)過程中,△BOC的最小面積是  ;

當(dāng)半圓O過點(diǎn)A時,半圓O位于正方形以外部分的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A2,4),B1,1),C4,3).

1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);

2)請畫出△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°后的△A2BC2;

3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(記過保留根號和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌

粽子每盒進(jìn)價是40元,超市規(guī)定每盒售價不得少于45元根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn):當(dāng)售價定為每盒45元時每天可賣出700盒,每盒售價每提高1元每天要少賣出20盒

1試求出每天的銷售量y與每盒售價之間的函數(shù)關(guān)系式;4分

2當(dāng)每盒售價定為多少元時,每天銷售的利潤最大?最大利潤是多少?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛準(zhǔn)備進(jìn)行如下操作試驗:把一根長為80cm的鐵絲剪成兩段,并把每一段各圍成一個正方形.要使這兩個正方形的面積之和等于272cm2,小剛該怎么剪?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x24x+6

(1)用配方法求出函數(shù)的頂點(diǎn)坐標(biāo);

(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案