24、生活中有人喜歡把請人傳送的便條折成圖丁形狀,折疊過程是這樣的(陰影部分表示紙條反面):
(l)如果信紙折成的長方形紙條寬為4cm,為了保證能折成圖丁形狀(即紙條兩端均剛好到達(dá)點(diǎn)P),紙條長至少多少厘米?紙條長最小時(shí).長方形紙條面積是多少?
(2)假設(shè)折成圖丁形狀紙條寬xcm,并且一端超出P點(diǎn)2cm,另一端超出P點(diǎn)3cm,
①請用x的代數(shù)式表示信紙折成的長方形紙條長.
②用含x的代數(shù)式表示折成的圖丁所示的平面圖形的面積S.
分析:(1)根據(jù)折疊知,紙條長至少是寬的5倍,進(jìn)一步求得紙條長最小時(shí),長方形紙條面積;
(2)根據(jù)(1)的結(jié)論,則y=5x+5,進(jìn)一步根據(jù)矩形的面積公式和等腰直角三角形的面積公式表示平面圖形的面積.
解答:解:(1)根據(jù)折疊的方法,知紙條長至少是寬的5倍,
即為4×5=20(cm),此時(shí)紙條的面積是20×4=80cm2

(2)根據(jù)題意,得
y=5x+5.
則平面圖形的面積S=x(5x+5)=5x2+5x.
點(diǎn)評:此題是一道動(dòng)手操作題,要通過實(shí)際動(dòng)手操作了解紙條的長和寬之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

生活中有人喜歡把請人傳送的便條折成圖丁形狀,折疊過程是這樣的(陰影部分表示紙條反面):
(1)如果信紙折成的長方形紙條寬為2cm,為了保證能折成圖丁形狀(即紙條兩端均超出點(diǎn)P),紙條長至少多少厘米?紙條長最小時(shí).長方形紙條面積是多少?
(2)假設(shè)折成圖丁形狀紙條寬xcm,并且一端超出P點(diǎn)2cm,另一端超出P點(diǎn)3cm,若信紙折成的長方形紙條長為ycm.求y關(guān)于x的函數(shù)關(guān)系式,用含x的代數(shù)式表示折成的圖丁所示的平面圖形的面積S;
(3)若希望(2)中紙條兩端超出P點(diǎn)長度相等,即最終圖形丁是軸對稱圖形,如果y=15cm,則開始折疊時(shí)點(diǎn)M應(yīng)放在什么位置?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

生活中有人喜歡把請人傳送的便條折成圖丁形狀,折疊過程如圖所示(陰影部分表示紙條反面),如果折成圖丁形狀的紙條寬 x cm,并且一端超出P點(diǎn)1cm,另一端超出P點(diǎn)2cm,那么折成的圖丁所示的平面圖形的面積為
5
2
x2+3x
5
2
x2+3x
 cm2.(用含x的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013浙江省永嘉縣黃田中學(xué)七年級下學(xué)期六校聯(lián)考期中數(shù)學(xué)試卷(帶解析) 題型:填空題

生活中有人喜歡把請人傳送的便條折成圖丁形狀,折疊過程如圖所示(陰影部分表示紙條反面),如果折成圖丁形狀的紙條寬 x cm, 并且一端超出P點(diǎn)1 cm,另一端超出P點(diǎn)2 cm,那么折成的圖丁所示的平面圖形的面積為       cm2.(用含x的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013浙江省七年級下學(xué)期六校聯(lián)考期中數(shù)學(xué)試卷(解析版) 題型:填空題

生活中有人喜歡把請人傳送的便條折成圖丁形狀,折疊過程如圖所示(陰影部分表示紙條反面),如果折成圖丁形狀的紙條寬 x cm, 并且一端超出P點(diǎn)1 cm,另一端超出P點(diǎn)2 cm,那么折成的圖丁所示的平面圖形的面積為       cm2.(用含x的代數(shù)式表示)

 

查看答案和解析>>

同步練習(xí)冊答案