【題目】如圖①,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),B(2,3),OC=a.將梯形ABCO沿直線y=x折疊,點(diǎn)A落在線段OC上,對應(yīng)點(diǎn)為E.
(1)求點(diǎn)E的坐標(biāo);
(2)①若BC∥AE,求a的值;(提示:兩邊互相平行的四邊形是平行四邊形,平行四邊形的對邊相等)
②如圖②,若梯形ABCO的面積為2a,且直線y=mx將此梯形面積分為1∶2的兩部分,求直線y=mx的函數(shù)表達(dá)式.
【答案】(1)點(diǎn)E的坐標(biāo)為(3,0);(2) a=5;(3) y=x或y=x.
【解析】
(1)由折疊的性質(zhì)可知OE=OA,由OA的長即可確定出點(diǎn)E的坐標(biāo);
(2)①由平行四邊形的性質(zhì)可知EC=AB,結(jié)合OE的長即可求得a的值;
②根據(jù)梯形的面積公式以及梯形的面積可求得a的值,從而可求得梯形的面積,設(shè)直線y=mx交BC于點(diǎn)D,點(diǎn)D的坐標(biāo)為(xD,yD),由直線y=mx將梯形面積分為1∶2兩部分,可得S△OCD=4或S△OCD=8,然后根據(jù)三角形的面積公式求得yD=或yD=,利用待定系數(shù)法可得直線BC的函數(shù)表達(dá)式,將yD分別代入即可求得直線y=mx的解析式.
(1)由折疊的性質(zhì)可知OE=OA,
∵A(0,3),∴OA=3,
∴OE=3,
∴點(diǎn)E的坐標(biāo)為(3,0);
(2)∵BC∥AE,AB∥CE,∴四邊形ABCE是平行四邊形,
∴CE=AB=2,∴OC=OE+CE=5,
∴a=5;
(3)S梯形ABCO= (AB+OC)·AO=2a,即,解得a=6,
∴S梯形ABCO=12,
設(shè)直線y=mx交BC于點(diǎn)D,點(diǎn)D的坐標(biāo)為(xD,yD),
∵直線y=mx將梯形面積分為1∶2兩部分,
∴S△OCD=×12=4或S△OCD=×12=8,
當(dāng)S△OCD=4時,×6yD=4,解得yD=,
當(dāng)S△OCD=8時,×6yD=8,解得yD=,
由B(2,3),C(6,0),可得直線BC的函數(shù)表達(dá)式為y=-x+,
則當(dāng)yD=時,xD=,此時y=x;
當(dāng)yD=時,xD=,此時y=x,
綜上可知y=x或y=x.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
(1)某文藝團(tuán)體組織了一場義演為“希望工程”募捐,共售出1000張門票,已知成人票每張8元,學(xué)生票每張5元,共得票款6950元,成人票和學(xué)生票各幾張
(2)某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元;經(jīng)粗加工后銷售,每噸利潤可達(dá)4500元;經(jīng)精加工后銷售,每噸利潤漲至7500元.當(dāng)?shù)匾患肄r(nóng)工商公司收獲這種蔬菜140噸,該公司加工的生產(chǎn)能力是:如果對蔬菜進(jìn)行粗加工,每天可加工16噸;如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時進(jìn)行.受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案.
方案一:將蔬菜全部進(jìn)行精加工.沒來得及進(jìn)行精加工的直接出售
方案二:盡可能多地對蔬菜進(jìn)行粗加工,沒有來得及進(jìn)行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.
你認(rèn)為選擇哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD繞點(diǎn)A按逆時針方向旋轉(zhuǎn)30°,得正方形AB1C1D1 , B1C1交CD于點(diǎn)E,AB= ,則四邊形AB1ED的內(nèi)切圓半徑為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平臺AB高為12m,在B處測得樓房CD頂部點(diǎn)D的仰角為45°,底部點(diǎn)C的俯角為30°,求樓房CD的高度( =1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE是⊙O的直徑,BD切⊙O于點(diǎn)D,DE∥BO,CE的延長線交BD于點(diǎn)A.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,8),B(6,0),點(diǎn)C(3,a)在線段AB上.
(1)則a的值為________;
(2)若點(diǎn)D(-4,3),求直線CD的函數(shù)表達(dá)式;
(3)點(diǎn)(-5,-4)在直線CD上嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OM上有三點(diǎn)A、B、C,滿足OA=20cm,AB=60cm,BC=10cm,點(diǎn)P從點(diǎn)O出發(fā),沿OM方向以1cm/秒的速度勻速運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā)在線段CO上向點(diǎn)O勻速運(yùn)動,兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)O時,點(diǎn)P、Q停止運(yùn)動.
(1)若點(diǎn)Q運(yùn)動速度為2cm/秒,經(jīng)過多長時間P、Q兩點(diǎn)相遇?
(2)當(dāng)P在線段AB上且PA=3PB時,點(diǎn)Q運(yùn)動到的位置恰好是線段AB的三等分點(diǎn),求點(diǎn)Q的運(yùn)動速度;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個三角形的第一條邊長為2a+5b,第二條邊比第一條邊長3a﹣2b,第三條邊比第二條邊短3a.
(1)則第二邊的邊長為 ,第三邊的邊長為 ;
(2)用含a,b的式子表示這個三角形的周長,并化簡;
(3)若a,b滿足|a﹣5|+(b﹣3)2=0,求出這個三角形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com