【題目】如圖,在△ABC中,∠ACB=90°,M、N分別是AB、AC的中點,延長BC至點D,使CD= BD,連接DM、DN、MN.若AB=6,則DN= .
【答案】3
【解析】解:連接CM, ∵M、N分別是AB、AC的中點,
∴NM= CB,MN∥BC,又CD= BD,
∴MN=CD,又MN∥BC,
∴四邊形DCMN是平行四邊形,
∴DN=CM,
∵∠ACB=90°,M是AB的中點,
∴CM= AB=3,
∴DN=3,
故答案為:3.
連接CM,根據(jù)三角形中位線定理得到NM= CB,MN∥BC,證明四邊形DCMN是平行四邊形,得到DN=CM,根據(jù)直角三角形的性質(zhì)得到CM= AB=3,等量代換即可.本題考查的是三角形的中位線定理、直角三角形的性質(zhì)、平行四邊形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知正方形OABC的邊長為2,頂點A、C分別在x、y軸的正半軸上,M是BC的中點.P(0,m)是線段OC上一動點(C點除外),直線PM交AB的延長線于點D.
(1)求點D的坐標(用含m的代數(shù)式表示);
(2)當△APD是等腰三角形時,求m的值;
(3)設過P、M、B三點的拋物線與x軸正半軸交于點E,過點O作直線ME的垂線,垂足為H(如圖2),當點P從點O向點C運動時,點H也隨之運動.請直接寫出點H所經(jīng)過的路徑長.(不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李用圍棋子排成下列一組有規(guī)律的圖案,其中第1個圖案有1枚棋子,第2個圖案有3枚棋子,第3個圖案有4枚棋子,第4個圖案有6枚棋子,…,那么第9個圖案的棋子數(shù)是枚.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在公園的O處附近有E,F(xiàn),G,H四棵樹,位置如圖所示(圖中小正方形的邊長均相等)現(xiàn)計劃修建一座以O為圓心,OA為半徑的圓形水池,要求池中不留樹木,則E,F(xiàn),G,H四棵樹中需要被移除的為( 。
A.E,F(xiàn),G
B.F,G,H
C.G,H,E
D.H,E,F(xiàn)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B( ,y2),C(﹣m,y3)是該拋物線上不同的三點,現(xiàn)將拋物線的對稱軸繞坐標原點O逆時針旋轉(zhuǎn)90°得到直線a,過拋物線頂點P作PH⊥a于H.
(1)用含m的代數(shù)式表示拋物線的頂點坐標;
(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個公共點,求k的值;
(3)當1<PH≤6時,試比較y1 , y2 , y3之間的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生利用雙休時間去距學校10km的炎帝故里參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車沿相同路線出發(fā),結(jié)果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度和汽車的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(6,0),點B(0,6),動點C在以半徑為3的⊙O上,連接OC,過O點作OD⊥OC,OD與⊙O相交于點D(其中點C、O、D按逆時針方向排列),連接AB.
(1)當OC∥AB時,∠BOC的度數(shù)為;
(2)連接AC,BC,當點C在⊙O上運動到什么位置時,△ABC的面積最大?并求出△ABC的面積的最大值;
(3)連接AD,當OC∥AD時,①求出點C的坐標;②直線BC是否為⊙O的切線?請作出判斷,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com