【題目】某快餐店共有10名員工,所有員工工資的情況如下表:
人員 | 店長 | 廚師甲 | 廚師乙 | 會計 | 服務(wù)員甲 | 服務(wù)員乙 | 勤雜工 |
人數(shù) | 1 | 1 | 1 | 1 | 1 | 3 | 2 |
工資額 | 20000 | 7000 | 4000 | 2500 | 2200 | 1800 | 1200 |
請解答下列問題:
(1)餐廳所有員工的平均工資是;所有員工工資的中位數(shù)是 .
(2)用平均數(shù)還是用中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng)?
(3)去掉店長和廚師甲的工資后,其他員工的平均工資是多少?它是否也能反映該快餐店員工工資的一般水平?
【答案】
(1)4350,2000
(2)解:由(1)可知,用中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng)
(3)解:去掉店長和廚師甲的工資后,其他員工的平均工資是2062.5元,和(2)的結(jié)果相比較,能反映餐廳員工工資的一般水平.
【解析】解:(1)平均工資為 (20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;
工資的中位數(shù)為 =2000元;
所以答案是:4350,2000;
【考點精析】解答此題的關(guān)鍵在于理解中位數(shù)、眾數(shù)的相關(guān)知識,掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是正方形,點P,Q在直線BC上,且AP∥DQ,過點Q作QO⊥BD,垂足為點O,連接OA,OP.
(1)如圖,點P在線段BC上,
①求證:四邊形APQD是平行四邊形;
②判斷OA,OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(2)若正方形ABCD的邊長為2,直接寫出BP=1時,△OBP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(x,y)在第一象限內(nèi),且x+y=6,點A的坐標為(4,0).設(shè)△OPA的面積為S,則下列圖象中,能正確反映面積S與x之間的函數(shù)關(guān)系式的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)衢州市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。
請根據(jù)圖中信息,解答下列問題:
(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);
(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?
(3)若要使2018年的國民生產(chǎn)總值達到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長率(精確到1%)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定了每月用水18立方米以內(nèi)(含18立方米)和用水18立方米以上兩種不同的收費標準,該市的用戶每月應(yīng)交水費y(元)是用水量x(立方米)的函數(shù),其圖象如圖所示.
(1)若某月用水量為18立方米,則應(yīng)交水費多少元?
(2)求當(dāng)x>18時,y關(guān)于x的函數(shù)表達式,若小敏家某月交水費81元,則這個月用水量為多少立方米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com