【題目】如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A. D.E在同一直線上,連接BE.

填空:(1),①∠AEB的度數(shù)為 ;②線段AD、BE之間的數(shù)量關(guān)系是 ;

(2)拓展探究:如圖2,ACB和△DCE均為等腰直角三角形,ACB=DCE=90°,點(diǎn)A、DE在同一直線上,且交BC于點(diǎn)F,連接BE.若∠CAF=BAFBE=2,試求AF的長(zhǎng).

【答案】1)①60°;②AD=BE;(24.

【解析】

1)由條件易證ACD≌△BCE,從而得到:AD=BE,∠ADC=BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù);

2)仿照(1)中的解法可求出∠AEB的度數(shù),延長(zhǎng)BEAC的延長(zhǎng)線于點(diǎn)G,推出ACF≌△BCG,根據(jù)全等三角形的性質(zhì)得到AF=BG,由于∠CAF=BAF,∠AEB=90°,求得EBG的中點(diǎn),即可求出AF=4.

(1)①如圖1,

∵△ACBDCE均為等邊三角形,

CA=CB,CD=CE,ACB=DCE=60°.

∴∠ACD=BCE.

ACDBCE中,

,

∴△ACD≌△BCE(SAS).

∴∠ADC=BEC.

∵△DCE為等邊三角形,

∴∠CDE=CED=60°.

∵點(diǎn)A,D,E在同一直線上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=BECCED=60°.

故答案為:60°.

②∵△ACD≌△BCE,

AD=BE.

故答案為:AD=BE;

(2)∵△ACBDCE均為等腰直角三角形,

CA=CB,CD=CE,ACB=DCE=90°.

∴∠ACD=BCE.

ACDBCE中,

,

∴△ACD≌△BCE(SAS).

AD=BE,∠ADC=BEC.

∵△DCE為等腰直角三角形,

∴∠CDE=CED=45°.

∵點(diǎn)A,D,E在同一直線上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=BECCED=90°

延長(zhǎng)BEAC的延長(zhǎng)線于點(diǎn)G,

ACFBCG,

∴△ACF≌△BCG,

AF=BG,

∵∠CAF=BAF,AEB=90°,

EBG的中點(diǎn),

BE=2,

AF=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是由同樣大小的⊙按一定規(guī)律所組成的,其中第一個(gè)圖形有5個(gè)⊙,第二個(gè)圖形一共有8個(gè)⊙,第3個(gè)圖形中一共有11個(gè)⊙,第4個(gè)圖形中一共有14個(gè)⊙,,按此規(guī)律排列,第2019個(gè)圖形中基本圖形的個(gè)數(shù)為(

A.6056B.6057C.6058D.6059

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為EBD,那么下列說(shuō)法錯(cuò)誤的是( 。

A. EBD是等腰三角形,EB=ED B. 折疊后ABE和C′BD一定相等

C. 折疊后得到的圖形是軸對(duì)稱(chēng)圖形 D. EBA和EDC′一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,兩點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)為-10,點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng)(點(diǎn)同時(shí)出發(fā))

1)請(qǐng)你寫(xiě)出數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù);

2)當(dāng)運(yùn)動(dòng)的時(shí)間為3秒時(shí),請(qǐng)你求出此時(shí)點(diǎn)、在數(shù)軸上對(duì)應(yīng)的數(shù),并求出、之間的距離;

3)經(jīng)過(guò)幾秒,點(diǎn)、點(diǎn)分別到原點(diǎn)的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A8,0)動(dòng)點(diǎn)PA出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QO出發(fā)以相同速度沿y軸正半軸運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)O,兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

1)當(dāng)t= 時(shí),∠OPQ=45°;

2)如圖2,以PQ為斜邊在第一象限作等腰RtPQM,求M點(diǎn)坐標(biāo);

3)在(2)的條件下,點(diǎn)Rx軸負(fù)半軸上一點(diǎn),且,點(diǎn)M關(guān)于PQ的對(duì)稱(chēng)點(diǎn)為N,求t為何值時(shí),△ONR為等腰直角三角形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F為垂足,則下列四個(gè)結(jié)論:(1AD上任意一點(diǎn)到點(diǎn)C、D的距離相等;(2AD上任意一點(diǎn)到AB、AC的距離相等;(3AD⊥BCBDCD;(4∠BDE=∠CDF,其中正確的個(gè)數(shù)是( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BABC,D在邊CB上,且DBDAAC

1)填空:如圖1,∠B   °,∠C   °;

2)如圖2,若M為線段BC上的點(diǎn),過(guò)MMHAD,交AD的延長(zhǎng)線于點(diǎn)H,分別交直線AB、AC與點(diǎn)N、E

①求證:ANE是等腰三角形;

②線段BN、CE、CD之間的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷(xiāo)售,兩批全部售完后,獲利不少于1200元,那么銷(xiāo)售單價(jià)至少為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案