【題目】某高科技發(fā)展公司投資500萬(wàn)元,成功研制出一種市場(chǎng)需求量較大的高科技替代產(chǎn)品,并投入資金1500萬(wàn)元作為固定投資. 已知生產(chǎn)每件產(chǎn)品的成本是40元,在銷售過(guò)程中發(fā)現(xiàn):當(dāng)銷售單價(jià)定為120元時(shí),年銷售量為20萬(wàn)件;銷售單價(jià)每增加10元,年銷售量將減少1萬(wàn)件,設(shè)銷售單價(jià)為(元),年銷售量為(萬(wàn)件),年獲利為(萬(wàn)元)。(年獲利=年銷售額—生產(chǎn)成本—投資)

1)試寫出之間的函數(shù)關(guān)系式;

2)請(qǐng)通過(guò)計(jì)算說(shuō)明,到第一年年底,當(dāng)取最大值時(shí),銷售單價(jià)定為多少?此時(shí)公司是盈利了還是虧損了?

【答案】1;(2)當(dāng)銷售單價(jià)為180元,年獲利最大,并且第一年年底公司虧損了,還差40萬(wàn)元就可收回全部投資.

【解析】

1)銷售單價(jià)為x元,先用x表示出年銷售量,再利用每件產(chǎn)品銷售利潤(rùn)×年銷售量=年獲利列出函數(shù)解答;

2)把(1)中所得的二次函數(shù),利用配方法得到頂點(diǎn)式,然后進(jìn)行判斷,即可得到答案.

解:(1)由題意知,當(dāng)銷售單價(jià)定為元時(shí),年銷售量減少萬(wàn)件,

,

之間的函數(shù)關(guān)系式是:.

由題意得:

之間的函數(shù)關(guān)系是:.

2)∵,

∴當(dāng)時(shí),取最大值,為,

∴當(dāng)銷售單價(jià)為180元,年獲利最大,并且第一年年底公司還差40萬(wàn)元就可收回全部投資;

∴到第一年年底公司虧了40萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 OAA1B1 是邊長(zhǎng)為 1 的正方形,以對(duì)角線 OA1 為邊作第二個(gè)正方形 OA1A2B2,連接 AA2,得到△ AA1A2;再以對(duì)角線 OA2 為邊作第三個(gè)正方形 OA2A3B3,連接 A1A3,得到△A1A2A3;再以對(duì)角線 OA3 為邊作第 四個(gè)正方形,連接 A2A4,得到△A2A3A4……記△AA1A2、△A1A2A3、△A2A3A4 的面積分別為 S1S2S3,如此下 去,則 S2019_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,yax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(﹣10),(m0);有如下判斷:①abc0;②b3c;③1;④|am+a|.其中正確的判斷有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷x件.已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息如下表:

產(chǎn)品

每件售價(jià)(萬(wàn)元)

每件成本(萬(wàn)元)

每年其他費(fèi)用(萬(wàn)元)

每年最大產(chǎn)銷量(萬(wàn)元)

10

a

40

200

18

8

40+0.05x2

100

其中a為常數(shù),且5≤a≤8

1)若產(chǎn)銷甲、乙兩種產(chǎn)品的年利潤(rùn)分別為y1萬(wàn)元、y2萬(wàn)元,直接寫出y1、y2x的函數(shù)關(guān)系式;

2)分別求出產(chǎn)銷兩種產(chǎn)品的最大年利潤(rùn);

3)為獲得最大年利潤(rùn),該公司應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某學(xué)校有一邊長(zhǎng)為20米的正方形區(qū)域(四周陰影是四個(gè)全等的矩形,記為區(qū)域甲;中心區(qū)是正方形,記為區(qū)域乙).區(qū)域甲建設(shè)成休閑區(qū),區(qū)域乙建成展示區(qū),已知甲、乙兩個(gè)區(qū)域的建設(shè)費(fèi)用如下表:

區(qū)域

價(jià)格(百元米2

6

5

設(shè)矩形的較短邊的長(zhǎng)為米,正方形區(qū)域建設(shè)總費(fèi)用為百元.

1的長(zhǎng)為 米(用含的代數(shù)式表示);

2)求關(guān)于的函數(shù)解析式;

3)當(dāng)中心區(qū)的邊長(zhǎng)要求不低于8米且不超過(guò)12米時(shí),預(yù)備建設(shè)資金220000元夠用嗎?請(qǐng)利用函數(shù)的增減性來(lái)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+3在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A,B,P是其對(duì)稱軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①2a+b=0,x=3ax2+bx+3=0的一個(gè)根,③△PAB周長(zhǎng)的最小值是+3.其中正確的是(  )

A. ①②③ B. 僅有①② C. 僅有①③ D. 僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=4,PC=5,將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到△CBQ位置.連接PQ,則以下結(jié)論錯(cuò)誤的是( 。

A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃生產(chǎn),兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表.

種產(chǎn)品

種產(chǎn)品

成本(萬(wàn)元)

2

5

利潤(rùn)(萬(wàn)元)

1

3

1)若工廠計(jì)劃獲利14萬(wàn)元,問(wèn),兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?

2)若工廠計(jì)劃投入資金不多于44萬(wàn)元,且獲利多于22萬(wàn)元,問(wèn)工廠有哪幾種生產(chǎn)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,M是斜邊AB的中點(diǎn),以CM為直徑作圓OAC于點(diǎn)N,延長(zhǎng)MND,使NDMN,連接AD、CD,CD交圓O于點(diǎn)E

(1)判斷四邊形AMCD的形狀,并說(shuō)明理由;

(2)求證:NDNE;

(3)DE2EC3,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案