【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(x1 , 0),(x2 , 0)兩點,且0<x1<1,1<x2<2,與y軸交于(0,﹣2).下列結論:①2a+b>1; ②a+b>2;③a﹣b<2;④3a+b>0; ⑤a<﹣1.其中正確結論的個數(shù)為( )
A.2
B.3
C.4
D.5
【答案】B
【解析】解:如圖: 0<x1<1,1<x2<2,并且圖象與y軸相交于點(0,﹣2),
可知該拋物線開口向下即a<0,c=﹣2,
①當x=2時,y=4a+2b+c<0,即4a+2b<﹣c;
∵c=﹣2,
∴4a+2b<2,
∴2a+b<1,
故本選項錯誤;
②∵當x=1時,y>0,
∴a+b+c>0,
∵c=﹣2,
∴a+b﹣2>0,故此選項正確;
③當x=﹣1時,y=a﹣b+c<0,
∵c=﹣2,
∴a﹣b<﹣c,
即a﹣b<2,
故本選項正確;
④∵0<x1<1,1<x2<2,
∴1<x1+x2<3,
又∵x1+x2=﹣ ,
∴1<﹣ <3,
∴3a+b<0,
故本選項錯誤;
⑤∵0<x1x2<2,x1x2= <2,
又∵c=﹣2,
∴a<﹣1.
故本選項正確;
故選B.
【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB⊥BE于點B,DE⊥BE于點E.
(1)若∠A=∠D,AB=DE,則△ABC與△DEF全等的理由是____;
(2)若∠A=∠D,BC=EF,則△ABC與△DEF全等的理由是_________;
(3)若AB=DE,BC=EF,則△ABC與△DEF全等的理由是_______;
(4)若AB=DE,AC=DF,則△ABC與△DEF全等的理由是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動點D從點A出發(fā)以每秒3個單位的速度運動至點B,過點D作DE⊥AB交射線AC于點E.設點D的運動時間為t秒(t>0).
(1)線段AE的長為 . (用含t的代數(shù)式表示)
(2)若△ADE與△ACB的面積比為1:4時,求t的值.
(3)設△ADE與△ACB重疊部分圖形的周長為L,求L與t之間的函數(shù)關系式.
(4)當直線DE把△ACB分成的兩部分圖形中有一個是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產部有技術工人15人,生產部為了合理制定產品的每月生產定額,統(tǒng)計了這15人某月的加工零件個數(shù):
每人加工零件個數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).
(2)假如生產部負責人把每位工人的月加工零件個數(shù)定為260,你認為這個定額是否合理?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)求△PAC為直角三角形時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
關于x的方程:的解是,;即的解是;的解是,;的解是,;
請觀察上述方程與解的特征,比較關于x的方程與它們的關系,猜想它的解是什么?并利用“方程的解”的概念進行驗證.
由上述的觀察、比較、猜想、驗證,可以得出結論:
如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個常數(shù),那么這樣的方程可以直接得解,請用這個結論解關于x的方程:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 當前,中國互聯(lián)網(wǎng)產業(yè)發(fā)展迅速,互聯(lián)網(wǎng)教育市場增長率位居全行業(yè)前列.以下是根據(jù)某媒體發(fā)布的2012﹣2015年互聯(lián)網(wǎng)教育市場規(guī)模的相關數(shù)據(jù),繪制的統(tǒng)計圖表的一部分.
(1)2015年互聯(lián)網(wǎng)教育市場規(guī)模約是億元(結果精確到1億元),并補全條形統(tǒng)計圖;
(2)截至2015年底,約有5億網(wǎng)民使用互聯(lián)網(wǎng)進行學習,互聯(lián)網(wǎng)學習用戶的年齡分布如圖所示,請你補全扇形統(tǒng)計圖 , 并估計7﹣17歲年齡段有億網(wǎng)民通過互聯(lián)網(wǎng)進行學習;
(3)根據(jù)以上材料,寫出你的思考、感受或建議(一條即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com