【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,8),點(diǎn)P在邊BC上以每秒1個(gè)單位長的速度由點(diǎn)C向點(diǎn)B運(yùn)動,同時(shí)點(diǎn)Q在邊AB上以每秒a個(gè)單位長的速度由點(diǎn)A向點(diǎn)B運(yùn)動,運(yùn)動時(shí)間為t秒(t>0).
(1)若反比例函數(shù)y= 圖象經(jīng)過P點(diǎn)、Q點(diǎn),求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點(diǎn)運(yùn)動到AB中點(diǎn)時(shí),是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;
【答案】
(1)
解:∵A(10,0),C(0,8),點(diǎn)P在邊BC上以每秒1個(gè)單位長的速度由點(diǎn)C向點(diǎn)B運(yùn)動,同時(shí)點(diǎn)Q在邊AB上以每秒a個(gè)單位長的速度由點(diǎn)A向點(diǎn)B運(yùn)動,
∴P(t,8),Q(10,at),
∵反比例函數(shù)y= 圖象經(jīng)過P點(diǎn)、Q點(diǎn),
∴8t=10at,解得a=
(2)
解:∵OQ垂直平分AP,
∴OP=OA,PQ=QA,
∴ =10,解得t=6,
∴Q(10,6a),P(6,8),
∵PQ=QA,
∴(10﹣6)2+(6a﹣8)2=(6a)2,解得a=
(3)
解:如圖,
∵Q為AB的中點(diǎn),
∴Q(10,4),P(t,8).
當(dāng)∠OPQ=90°時(shí),OP2+PQ2=OQ2,即t2+82+(10﹣t)2+42=102+42,整理得,t2﹣10t+32=0,
∵△=(﹣10)2﹣4×32=100﹣128=﹣28<0,
∴此方程無解,即此種情況不存在;
當(dāng)∠POQ=90°時(shí),OQP2+PQ2=OP2,即102+42+(10﹣t)2+42=t2+82,整理得,﹣20t=﹣168,解得t= ,
∵AQ=4,
∴at=4,即 a=4,解得a= .
【解析】(1)先用t表示出P、Q兩點(diǎn)的坐標(biāo),再由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)即可得出結(jié)論;(2)先根據(jù)OQ垂直平分AP得出OP=OA,求出t的值,再由PQ=QA即可得出a的值;(3)分∠OPQ=90°與∠POQ=90°兩種情況進(jìn)行分類討論.
【考點(diǎn)精析】本題主要考查了反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點(diǎn);性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P(1,1)為圓心的⊙P與x軸,y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動,連接PF,過點(diǎn)P作PE⊥PF交y軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動的時(shí)間是t秒(t>0).
(1)若點(diǎn)E在y軸的負(fù)半軸上(如圖所示),求證:PE=PF;
(2)在點(diǎn)F運(yùn)動過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點(diǎn)F關(guān)于點(diǎn)M的對稱點(diǎn)F′,經(jīng)過M、E和F′三點(diǎn)的拋物線的對稱軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動過程中,是否存在某一時(shí)刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圓規(guī)兩腳形成的角α稱為圓規(guī)的張角.一個(gè)圓規(guī)兩腳均為12cm,最大張角150°,你能否畫出一個(gè)半徑為20cm的圓?請借助圖2說明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(6,0),B(0,8),點(diǎn)C的坐標(biāo)為(0,m),過點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為x軸上的一動點(diǎn),連接CD,DE,以CD,DE為邊作CDEF.
(1)當(dāng)0<m<8時(shí),求CE的長(用含m的代數(shù)式表示);
(2)當(dāng)m=3時(shí),是否存在點(diǎn)D,使CDEF的頂點(diǎn)F恰好落在y軸上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)D在整個(gè)運(yùn)動過程中,若存在唯一的位置,使得CDEF為矩形,請求出所有滿足條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明一家利用國慶八天駕車到某景點(diǎn)旅游,小汽車出發(fā)前油箱有油35L,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時(shí)間t(h)之間的關(guān)系如圖所示,根據(jù)圖像回答下列問題:
(1)小汽車行駛______h后加油,中途加油_______L
(2)求加油前油箱余油量Q與行駛時(shí)間t的函數(shù)關(guān)系式
(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點(diǎn)200km,車速80km/h,要到達(dá)目的地,油箱中的油是否夠用?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線l:y=﹣x+2與y軸交于點(diǎn)A,拋物線y=(x﹣1)2+k經(jīng)過點(diǎn)A,其頂點(diǎn)為B,另一拋物線y=(x﹣h)2+2﹣h(h>1)的頂點(diǎn)為D,兩拋物線相交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo),并說明點(diǎn)D在直線l上的理由;
(2)設(shè)交點(diǎn)C的橫坐標(biāo)為m.
交點(diǎn)C的縱坐標(biāo)可以表示為:或;
(3)如圖2,若∠ACD=90°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+4與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C從點(diǎn)B出發(fā),以每秒5個(gè)單位長度的速度向點(diǎn)A勻速運(yùn)動;同時(shí)點(diǎn)D從點(diǎn)O出發(fā),以每秒4個(gè)單位長度的速度向點(diǎn)B勻速運(yùn)動,到達(dá)終點(diǎn)后運(yùn)動立即停止.連接CD,取CD的中點(diǎn)E,過點(diǎn)E作EF⊥CD,與折線DO﹣OA﹣AC交于點(diǎn)F,設(shè)運(yùn)動時(shí)間為t秒.
(1)點(diǎn)C的坐標(biāo)為(用含t的代數(shù)式表示);
(2)求證:點(diǎn)E到x軸的距離為定值;
(3)連接DF、CF,當(dāng)△CDF是以CD為斜邊的等腰直角三角形時(shí),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,在△ABC外側(cè)作直線CP,點(diǎn)A關(guān)于直線CP的對稱點(diǎn)為D,連接AD,BD,其中BD交直線CP于點(diǎn)E.
(1)如圖1,∠ACP=15°.
①依題意補(bǔ)全圖形;
②求∠CBD的度數(shù);
(2)如圖2,若45°<∠ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com