【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運(yùn)動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設(shè)運(yùn)動的時間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當(dāng)t為何值時,四邊形EHFG為菱形;
(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.
【答案】(1)證明見解析;(2)t=1,(3)不存在某個時刻t,使四邊形EHFG為矩形.
【解析】
(1)根據(jù)菱形的性質(zhì)得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根據(jù)全等三角形的性質(zhì)得到∠DFA=∠BEC,根據(jù)平行線的判定定理即可得到結(jié)論;
(2)過D作DM⊥AB于M,連接GH,EF,推出四邊形AECF是平行四邊形,根據(jù)菱形的判定定理即可得到四邊形EGFH是菱形,證得四邊形DMEF是矩形,于是得到ME=DF=t列方程即可得到結(jié)論;
(3)不存在,假設(shè)存在某個時刻t,使四邊形EHFG為矩形,根據(jù)矩形的性質(zhì)列方程即可得到結(jié)果.
(1)證明:∵動點E、F同時運(yùn)動且速度相等,
∴DF=BE,
∵四邊形ABCD是菱形,
∴∠B=∠D,AD=BC,AB∥DC,
在△ADF與△CBE中,
∴△ADF≌△CBE,
∴∠DFA=∠BEC,
∵AB∥DC,
∴∠DFA=∠FAB,
∴∠FAB=∠BEC,
∴AF∥CE;
(2)過D作DM⊥AB于M,連接GH,EF,
∴DF=BE=t,
∵AF∥CE,AB∥CD,
∴四邊形AECF是平行四邊形,
∵G、H是AF、CE的中點,
∴GH∥AB,
∵四邊形EGFH是菱形,
∴GH⊥EF,
∴EF⊥AB,∠FEM=90°,
∵DM⊥AB,
∴DM∥EF,
∴四邊形DMEF是矩形,
∴ME=DF=t,
∵AD=4,∠DAB=60°,DM⊥AB,
∴
∴BE=4﹣2﹣t=t,
∴t=1,
(3)不存在,假設(shè)存在某個時刻t,使四邊形EHFG為矩形,
∵四邊形EHFG為矩形,
∴EF=GH,
∴EF2=GH2,
即解得t=0,0<t<4,
∴與原題設(shè)矛盾,
∴不存在某個時刻t,使四邊形EHFG為矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上.
(1)如圖1,當(dāng)EP⊥BC時,求CN的長;
(2) 如圖2,當(dāng)EP⊥AC時,求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△DCE均為等腰三角形,點A、D、E在同一條直線上,BC和AE相交于點O,連接BE,若∠CAB=∠CBA=∠CDE=∠CED=50°。
(1)求證:AD=BE;
(2)求∠AEB!
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線交于點O,點E是菱形外一點,DE∥AC,CE∥BD.
(1)求證:四邊形DECO是矩形;
(2)連接AE交BD于點F,當(dāng)∠ADB=30°,DE=2時,求AF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017·達(dá)州)下列命題是真命題的是( )
A. 若一組數(shù)據(jù)是1,2,3,4,5,則它的方差是3
B. 若分式方程有增根,則它的增根是1
C. 對角線互相垂直的四邊形,順次連接它的四邊中點所得四邊形是菱形
D. 若一個角的兩邊分別與另一個角的兩邊平行,則這兩個角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,
請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請你將條形統(tǒng)計圖(2)補(bǔ)充完整;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,三個內(nèi)角的平分線交于點.過點作,交邊于點.
(1)如圖1,
①若,則___________,_____________;
②猜想與的關(guān)系,并說明你的理由:
(2)如圖2,作外角的平分線交的延長線于點.若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等腰直角三角形,,點是的中點,延長至點,使,連接(如圖①).
(1)求證:≌;
(2)已知點是的中點,連接(如圖②).
①求證: ≌;
②如圖③,延長至點,使,連接,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com