【題目】如圖,A、B是⊙O上的兩個(gè)定點(diǎn),P是⊙O上的動(dòng)點(diǎn)(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點(diǎn)A、B的滑動(dòng)角.
(1)已知∠APB是⊙O上關(guān)于點(diǎn)A、B的滑動(dòng)角,
①若AB是⊙O的直徑,則∠APB= °;
②若⊙O的半徑是1,AB=,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點(diǎn),以O2為圓心作一個(gè)圓與⊙O1相交于A、B兩點(diǎn),∠APB是⊙O1上關(guān)于點(diǎn)A、B的滑動(dòng)角,直線PA、PB分別交⊙O2于M、N(點(diǎn)M與點(diǎn)A、點(diǎn)N與點(diǎn)B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.
【答案】(1)①90°;②45°或90°;(2)詳見(jiàn)解析.
【解析】
(1)①根據(jù)直徑所對(duì)的圓周角等于90°即可求解;
②根據(jù)勾股定理的逆定理可得∠AOB=90°,再分點(diǎn)P在優(yōu)弧上;點(diǎn)P在劣弧上兩種情況討論求解;
(2)根據(jù)點(diǎn)P在⊙O1上的位置分為四種情況得到∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.
解:(1)①若AB是⊙O的直徑,則∠APB=90.
②如圖,連接AB、OA、OB.
在△AOB中,
∵OA=OB=1.AB=,
∴OA2+OB2=AB2.
∴∠AOB=90°.
當(dāng)點(diǎn)P在優(yōu)弧上時(shí),∠APB=∠AOB=45°;
當(dāng)點(diǎn)P在劣弧上時(shí),∠AP′B=(360°﹣∠AOB)=135°
(2)根據(jù)點(diǎn)P在⊙O1上的位置分為以下四種情況.
第一種情況:點(diǎn)P在⊙O2外,且點(diǎn)A在點(diǎn)P與點(diǎn)M之間,點(diǎn)B在點(diǎn)P與點(diǎn)N之間,如圖①
∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN﹣∠ANB;
第二種情況:點(diǎn)P在⊙O2外,且點(diǎn)A在點(diǎn)P與點(diǎn)M之間,點(diǎn)N在點(diǎn)P與點(diǎn)B之間,如圖②.
∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),
∴∠APB=∠MAN+∠ANB﹣180°;
第三種情況:點(diǎn)P在⊙O2外,且點(diǎn)M在點(diǎn)P與點(diǎn)A之間,點(diǎn)B在點(diǎn)P與點(diǎn)N之間,如圖③.
∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°﹣∠MAN﹣∠ANB,
第四種情況:點(diǎn)P在⊙O2內(nèi),如圖④,
∠APB=∠MAN+∠ANB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,D為半圓上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接AD,過(guò)點(diǎn)O作AD的垂線,交半圓O的切線AC于點(diǎn)C,交半圓O于點(diǎn)E.連接BE,DE.
(1)求證:∠BED=∠C.
(2)連接BD,OD,CD.
填空:
①當(dāng)∠ACO的度數(shù)為 時(shí),四邊形OBDE為菱形;
②當(dāng)∠ACO的度數(shù)為 時(shí),四邊形AODC為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某飛機(jī)于空中探測(cè)某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測(cè)山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測(cè)目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣1;②在每個(gè)象限內(nèi),y隨x的增大而增大;③若點(diǎn)A(﹣1,h),B(2,k)在圖象上,則h<k;④若點(diǎn)P(x,y)在上,則點(diǎn)P′(﹣x,﹣y)也在圖象.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運(yùn)動(dòng),連接AP,將線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得線段PQ.
(1)當(dāng)點(diǎn)Q落到AD上時(shí),∠PAB=____°,PA=_____,長(zhǎng)為_____;
(2)當(dāng)AP⊥BD時(shí),記此時(shí)點(diǎn)P為P0,點(diǎn)Q為Q0,移動(dòng)點(diǎn)P的位置,求∠QQ0D的大。
(3)在點(diǎn)P運(yùn)動(dòng)中,當(dāng)以點(diǎn)Q為圓心,BP為半徑的圓與直線BD相切時(shí),求BP的長(zhǎng)度;
(4)點(diǎn)P在線段BD上,由B向D運(yùn)動(dòng)過(guò)程(包含B、D兩點(diǎn))中,求CQ的取值范圍,直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是邊長(zhǎng)為1的等邊△ABC的中心,將AB、BC、CA分別繞點(diǎn)A、點(diǎn)B、點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<180°),得到AB′、BC′、CA′,連接A′B′、B′C′、A′C′、OA′、OB′.(1)∠A′OB′=___°;(2)當(dāng)α=___°時(shí),△A′B′C′的周長(zhǎng)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=9,以D為圓心,3為半徑作⊙D,E為⊙D上一動(dòng)點(diǎn),連接AE,以AE為直角邊作Rt△AEF,使∠EAF=90°,tan∠AEF= ,則點(diǎn)F與點(diǎn)C的最小距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形ABCD折疊,使點(diǎn)C與點(diǎn)D重合于正方形內(nèi)點(diǎn)P處,折痕分別為AF、BE,如果正方形ABCD的邊長(zhǎng)是2,那么△EPF的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com