如圖,已知半徑為1的⊙O1與x軸交于A,B兩點,OM為⊙O1的切線,切點為M,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點.
(1)求二次函數(shù)的解析式.
(2)求出圖中陰影部分的面積.
(3)求切線OM的函數(shù)解析式.
(4)線段OM上是否存在一點P,使得以P,O,A為頂點的三角形與△OO1M相似?若存在,請求出點P的坐標;若不存在,請說明理由.
分析:(1)由O點坐標及圓的半徑,可知A(1,0),B(3,0),利用交點式求二次函數(shù)解析式;
(2)由切線的性質可知△OO1M直角三角形,又O1M=1,O1O=2,可知∠O1OM=30°,則∠OO1M=60°,利用扇形面積公式求圖中陰影部分面積;
(3)過點M作MC⊥OB,垂足為C,解Rt△OO1M求OM,解Rt△OCM求OC,MC,確定M點坐標,設直線OM解析式為y=kx,將M點坐標代入求切線OM的函數(shù)解析式;
(4)存在,過A點分別作P1A⊥OB,P2A⊥OM,垂足為P2,解Rt△OAP1求OA,AP1,確定P1的坐標,利用AP2為△OO1M中位線確定P2的坐標.
解答:解:(1)∵O1的坐標為(2,0),O1A=O1B=1,
∴A(1,0),B(3,0),
∴拋物線解析式為:y=-(x-1)(x-3),即y=-x2+4x-3;

(2)∵OM為⊙O1的切線,切點為M,
∴△OO1M直角三角形,
又∵O1M=1,O1O=2,
∴∠O1OM=30°,
則∠OO1M=60°,
∴S陰影部分=
60•π•12
360
=
π
6
;

(3)如圖,過點M作MC⊥OB,垂足為C,
在Rt△OO1M中,∠O1OM=30°,OM=
3
,O1M=1,
在Rt△OCM中,∠O1OM=30°,則OC=OMcos30°=
3
2
,MC=OMsin30°=
3
2
,
則M(
3
2
,
3
2
),
設直線OM解析式為y=kx,則
3
2
=
3
2
k,解得k=
3
3
,
所以,切線OM的函數(shù)解析式為y=
3
3
x;

(4)存在,
如圖,過A點作P1A⊥OB交OM于P1,作P2A⊥OM,垂足為P2,
在Rt△OAP1中,OA=1,AP1=OAtan30°=
3
3
,此時P1(1,
3
3
),
∵AP2△OO1M中位線,∴P2
3
4
,
3
4
),
∴所求P點坐標為:(1,
3
3
)或(
3
4
,
3
4
).
點評:本題考查了二次函數(shù)的綜合運用.關鍵是根據(jù)圓的性質求A、B兩點坐標,確定拋物線解析式,根據(jù)三角形為特殊的直角三角形,解直角三角形求相關點的坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知半徑為18cm的圓形紙片,如果要在這張紙片上裁剪出一個扇形作為圓錐的側面,一個圓作為圓錐的底面,試問該如何裁剪,能使圓錐的底面圓面積盡量大,并且扇形的弧長恰好與圓錐底面圓的周長相配套(即兩者長度相等),求出這時圓錐的表面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知半徑為5cm的⊙O是△ABC的外接圓,CD是AB邊上的高,AE是⊙O的直徑.若AC=6cm,BC=9cm.求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知半徑為1的⊙O1與x軸交于A,B兩點,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點.
(1)求二次函數(shù)的解析式;
(2)射線OM從y軸正半軸開始,繞點O順時針方向以每秒15°的速度旋轉,幾秒后射線OM與⊙O1相切?(切點為M)
(3)當射線OM與⊙O1相切時,在射線OM上是否存在一點P,使得以P,O,A為頂點的三角形與△OO1M相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州模擬)如圖,已知半徑為1的⊙O1與x軸交于A、B兩點,經(jīng)過原點的直線MN切⊙O1于點M,圓心O1的坐標為(2,0).
(1)求切線MN的函數(shù)解析式;
(2)線段OM上是否存在一點P,使得以P、O、A為頂點的三角形與△OO1M相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)若將⊙O1沿著x軸的負方向以每秒1個單位的速度移動;同時將直線MN以每秒2個單位的速度向下平移,設運動時間為t(t>0),求t為何值時,直線MN再一次與⊙O1相切?(本小題保留3位有效數(shù)字)

查看答案和解析>>

同步練習冊答案