【題目】已知如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC.若∠A=22.5°,CD=8cm,求⊙O的半徑.

【答案】解:連接OC,如圖所示:
∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=DE= CD=4cm,
∵∠A=22.5°,
∴∠COE=2∠A=45°,
∴△COE為等腰直角三角形,
∴OC= CE=4 cm,
即⊙O的半徑為4 cm.

【解析】連接OC,由圓周角定理得出∠COE=45°,根據(jù)垂徑定理可得CE=DE=4cm,證出△COE為等腰直角三角形,利用特殊角的三角函數(shù)可得答案.
【考點精析】關于本題考查的勾股定理的概念和垂徑定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,點和點是坐標軸上兩點,點為坐標軸上一點,若三角形的面積為,則點坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個3×3的方格中填寫了9個數(shù)字,使得每行、每列、每條對角線上的三個數(shù)之和相等,得到的3×3的方格稱為一個三階幻方.

1)在圖1中空格處填上合適的數(shù)字,使它構成一個三階幻方;

2)如圖2的方格中填寫了一些數(shù)和字母,當x+y的值為多少時,它能構成一個三階幻方.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段

1)如圖1,點沿線段自點向點的速度運動,同時點沿線段點向點的速度運動,幾秒鐘后,兩點相遇?

2)如圖1,幾秒后,點兩點相距?

3)如圖2,,當點的上方,且時,點繞著點30/秒的速度在圓周上逆時針旋轉一周停止,同時點沿直線點向點運動,假若點兩點能相遇,求點的運動速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.

(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

情境再現(xiàn):

舉世矚目的港珠澳大橋東接香港,西接珠海、澳門,全長千米,是世界上最長的跨海大橋,被譽為“新世界七大奇跡”之一.如圖,香港口岸點至珠?诎饵c千米,海底隧道全長約千米,隧道一端的東人工島點到香港口岸的路程為千米.某一時刻,一輛穿梭巴士從香港口岸發(fā)車,沿港珠澳大橋開往珠?诎.分鐘后,一輛私家車也從香港口岸出發(fā)沿港珠澳大橋開往珠?诎.在私家車出發(fā)的同時,一輛大客車從珠海口岸出發(fā)開往香港口岸.已知穿梭巴士的平均速度為千米/時,大客車的平均速度為千米/時,私家車的平均速度為千米/.

問題解決:

(1)穿梭巴士出發(fā)多長時間與大客車相遇?

(2)私家車能否在到達珠?诎肚白飞洗┧蟀褪浚空f明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標為A(1,2),B(4,1),C(2,4).

(1)在圖中畫出△ABC關于y軸對稱的圖形△A’B’C’;

(2)在圖中x軸上作出一點P,使PA+PB的值最小;并寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCO的邊OAOC在坐標軸上,點B坐標為(8,8),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG

(1)求證:△CBG≌△CDG

(2)求∠HCG的度數(shù);判斷線段HG、OHBG的數(shù)量關系,并說明理由;

(3)連結BD、DAAE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案