【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)若AB3,AC4,求線段PB的長.

【答案】1)見解析;(2PB.

【解析】

1)由直徑所對的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對角相等,根據(jù)同弧所對的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到ODPD垂直,即可得證;

2)由PDBC平行,得到一對同位角相等,再由同弧所對的圓周角相等及等量代換得到∠P=∠ACD,根據(jù)同角的補角相等得到一對角相等,利用兩對角相等的三角形相似;由三角形ABC為直角三角形,利用勾股定理求出BC的長,再由OD垂直平分BC,得到DBDC,相似三角形的性質,得比例,求出所求即可.

1)證明:∵圓心OBC上,

BC是圓O的直徑,

∴∠BAC90°,

連接OD

AD平分∠BAC,

∴∠BAC2DAC,

∵∠DOC2DAC

∴∠DOC=∠BAC90°,即ODBC,

PDBC,

ODPD,

OD為圓O的半徑,

PD是圓O的切線;

2)∵PDBC

∴∠P=∠ABC,

∵∠ABC=∠ADC,

∴∠P=∠ADC

∵∠PBD+ABD180°,∠ACD+ABD180°,

∴∠PBD=∠ACD,

∴△PBD∽△DCA;

∵△ABC為直角三角形,

BC2AB2+AC232+4225

BC5,

OD垂直平分BC

DBDC,

BC為圓O的直徑,

∴∠BDC90°,

RtDBC中,DB2+DC2BC2,即2DC2BC225,

DCDB

∵△PBD∽△DCA,

PB

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線x軸交于點A、B兩點(A點在B點左側),與y軸交于點C0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D

1)求出拋物線的函數(shù)表達式;

2)設點E時拋物線上一點,且SABE=SABC,求tanECO的值;

3)點P在拋物線上,點Q在拋物線對稱軸上,若以B、CP、Q為頂點的四邊形是平行四邊形,求點P坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線x1的拋物線經(jīng)過A(﹣1,0)、C0,3)兩點,與x軸的另一個交點為B,點Dy軸上,且OB3OD

1)求該拋物線的表達式;

2)設該拋物線上的一個動點P的橫坐標為t

①當0t3時,求四邊形CDBP的面積St的函數(shù)關系式,并求出S的最大值;

②點Q在直線BC上,若以CD為邊,點C、D、Q、P為頂點的四邊形是平行四邊形,請求出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰RtABC,∠BAC90°,BC,EAB上一點,以CE為斜邊作等腰RtCDE,連接AD,若∠ACE30°,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)人數(shù)

1

6

2

8

3

14

4

a

5

10

請結合圖表完成下列各題:

求表中a的值; 頻數(shù)分布直方圖補充完整;

若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

510名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.電路圖上有四個開關A、BC、D和一個小燈泡,閉合開關D或同時閉合開關A,B,C都可使小燈泡發(fā)光.

(1)任意閉合其中一個開關,則小燈泡發(fā)光的概率等于   ;

(2)任意閉合其中兩個開關,請用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x22tx+t22t+40

1)當t3時,解這個方程;

2)若m,n是方程的兩個實數(shù)根,設Q=(m2)(n2),試求Q的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在汽車車輪修理廠,工人師傅常用兩個棱長為a的正方形卡住車輪.如圖是其截面圖(a小于車輪半徑),量出兩個正方形的距離AB的長為2b,就可以得出車輪的直徑.請你推求出直徑d的公式.

查看答案和解析>>

同步練習冊答案