【題目】如圖,在正方形中,平分,交于點垂直平分線段 ,分別交 、延長線于點、,則下列結(jié)論: ; .其中正確的結(jié)論是__________.(填寫所有正確結(jié)論的序號)

【答案】①②③

【解析】

:①在△AOH和△BIH中,根據(jù)三角形內(nèi)角和定理,如圖兩個角對應相等,則第三個角∠FIB=BAE=22.5°

②根據(jù)線段中垂線定理證明∠AEG=EAG=22.5°=BAE,可得EGAB;

③根據(jù)等量代換可得:∠CGF=BHI,可作判斷;

④連接EH,證明四邊形AHEG是菱形,根據(jù)EHBH,及相似三角形的性質(zhì)可作判斷.

解:①如圖,∵四邊形ABCD是正方形,


∴∠BAC=BAD=45°,
AE平分∠BAC
∴∠BAE=CAE=22.5°,
IFAE的中垂線,
AEPQ,
∴∠AOH=90°,
∵∠AOH=HBI=90°,∠AHO=IHB
∴∠FIB=BAE=22.5°;

故①正確;

②∵OGAE的中垂線,
AG=EG
∴∠AEG=EAG=22.5°=BAE,
EGAB
故②正確;

③∵∠HAO=GAO,∠AOH=AOG=90°
∴∠AHO=AGO,
∵∠CGF=AGO,∠BHI=AHO,
∴∠CGF=BHI,
RtBHI中,tanCGF=tanBHI=,
故③正確;

④連接EH,
AH=AG=EG,EGAB
∴四邊形AHEG是菱形,
AH=EH=EGBH,

EGAB,
∴△CEG∽△CBA,
=()2,
故④不正確;
本題正確的是:①②③,
故答案是:①②③.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形的邊長為,邊上一點(不與端點重合),將沿對折至,延長交邊于點,連接,

__________

②若的中點,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,把AB繞點A順時針旋轉(zhuǎn)αα180°)得到AB,把AC繞點A逆時針旋轉(zhuǎn)β得到AC,連接BC,當α+β180°時,我們稱△ABC是△ABC的旋補三角形,△ABCBC上的中線AD叫做△ABC的旋補中線.

如圖②,當△ABC為等邊三角形時,△ABC是△ABC的旋補三角形,AD是旋補中線,ADBC的數(shù)量關系為:AD_____BC;當BC8時,則BC長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,EBC的中點.將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則△CDF的面積為( )

A. 3.6 B. 4.32 C. 5.4 D. 5.76

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,動點E從點A出發(fā)向點D運動,同時動點F從點D出發(fā)向點C運動,點E、F運動的速度相同,當它們到達各自終點時停止運動,運動過程中線段AF、BE相交于點P,M是線段BC上任意一點,則MD+MP的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的兩條對角線分別長68,點P是對角線AC上的一個動點,點MN分別是邊AB、BC的中點,則PMN周長的最小值是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,為斜邊的中線,過點D于點E,延長至點F,使,連接,點G在線段上,連接,且.下列結(jié)論:①;②四邊形是平行四邊形;③;④.其中正確結(jié)論的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[問題解答]

兩個城鎮(zhèn)與一條公路位置如圖①所示.現(xiàn)電信部門需在公路上修建一座信號發(fā)射塔要求發(fā)射塔到兩個城鎮(zhèn)的距離之和最短.

      

解:點作關于直線的對稱點連結(jié),

與直線的交點即為所求的點.

關于直線對稱,

直線垂直平分

即為所求的點。(兩點之間線段最短)

請根據(jù)以上問題解答,完成下列問題.

[方法運用]如圖②,在正方形中,在邊上,點在對角線AC上,

1)當點是邊的中點時,則的最小值為

2)若周長的最小值.

[拓展提升]如圖③,在中,AD平分于點,點分別在上,則的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點上.則下列命題為真命題的是(

A.若半徑平分弦.則四邊形是平行四邊形

B.若四邊形是平行四邊形.則

C..則弦平分半徑

D.若弦平分半徑.則半徑平分弦

查看答案和解析>>

同步練習冊答案