如圖,點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過(guò)點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.
(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長(zhǎng);
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說(shuō)明理由.

解:(1)∵△OBC是等邊三角形,
∴∠OBC=60°,OC=BC=0B,
∵點(diǎn)B的坐標(biāo)為(6,0),
∴OB=6,
在Rt△OBD中,∠OBC=60°,OB=6,
∴OD=OBtan∠OBC=6
∴點(diǎn)D的坐標(biāo)為(0,6),
設(shè)直線BD的解析式為y=kx+b,則可得,
解得:,
∴直線BD的函數(shù)解析式為y=-x+6
(2)∵∠OCB=60°,∠CEF=90°,
∴∠CFE=30°,
∴∠AFO=30°(對(duì)頂角相等),
又∵∠OBC=60°,∠AEB=90°,
∴∠BAE=30°,
∴∠BAE=∠AFO,
∴OF=OA=2.
(3)連接BF,OE,如圖所示:
∵A(-2,0),B(6,0),
∴AB=8,
在Rt△ABE中,∠ABE=60°,AB=8,
∴BE=ABcos∠ABE=4,
∴CE=BC-BE=2,
∴OF=CE=2,
在△COE和△OBF中,,
∴△COE≌△OBF(SAS),
∴OE=BF.
分析:(1)根據(jù)△OBC是等邊三角形,可得∠OBC=60°,在Rt△PBD中,解得OD的長(zhǎng)度,得出點(diǎn)D的坐標(biāo),利用待定系數(shù)法求出直線BD的解析式即可;
(2)分別求出∠BAE和∠AFO的度數(shù),即可得出OF=OA=2.
(3)在Rt△ABE中,先求出BE,繼而得出CE=OF,證明△COE≌△OBF,可得BF和OE的數(shù)量關(guān)系.
點(diǎn)評(píng):本題考查了一次函數(shù)的綜合,解答本題的關(guān)鍵是熟練掌握待定系數(shù)法及數(shù)形結(jié)合思想的運(yùn)用,對(duì)于此類綜合性較強(qiáng)的題目,要求同學(xué)們具有扎實(shí)的基本功,熟練掌握學(xué)過(guò)的性質(zhì)定理及常見(jiàn)解題方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A的坐標(biāo)是(1,1),若點(diǎn)B在x軸上,且△ABO是等腰三角形,則點(diǎn)B的坐標(biāo)不可能是(  )
A、(2,0)
B、(
1
2
,0)
C、(-
2
,0)
D、(1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,點(diǎn)P的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)南)如圖,點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過(guò)點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.
(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長(zhǎng);
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•槐蔭區(qū)二模)如圖,點(diǎn)B的坐標(biāo)是(4,4),作BA⊥x軸于點(diǎn)A,作BC⊥y軸于點(diǎn)C,反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過(guò)BC的中點(diǎn)E,與AB交于點(diǎn)F,分別連接OE、CF,OE與CF交于點(diǎn)M,連接AM.
(1)求反比例函數(shù)的函數(shù)解析式及點(diǎn)F的坐標(biāo);
(2)你認(rèn)為線段OE與CF有何位置關(guān)系?請(qǐng)說(shuō)明你的理由.
(3)求證:AM=AO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•甘井子區(qū)模擬)如圖,點(diǎn)A的坐標(biāo)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案