11.把多項式-x-1-3x3y2+2x2y3按x的降冪排列是-3x3y2+2x2y3-x-1.

分析 按x的指數(shù)從大到小排列即可,注意:排列時帶著項的符號.

解答 解:把多項式-x-1-3x3y2+2x2y3按x的降冪排列是-3x3y2+2x2y3-x-1.
故答案為:-3x3y2+2x2y3-x-1.

點評 本題考查了有關(guān)多項式的排列問題,注意:①按x的降冪排列是指按x的指數(shù)從大到小排列,②排列時帶著項的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,有一個形如六邊形的點陣,它的中心是一個點,從內(nèi)向外算,中心為第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.
(1)填寫如表:
層數(shù)123456
該層對應(yīng)的點數(shù)1612182430
所有層的總點數(shù)1719376191
(2)寫出第n層所對應(yīng)的總點數(shù):寫出n層的六邊形點陣的總點數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.一列數(shù)據(jù)$\frac{1}{3}$、$\frac{2}{9}$、$\frac{3}{27}$、$\frac{4}{81}$…按此排列,那么第5個數(shù)據(jù)是$\frac{5}{243}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,拋物線y=a2+bx+c(a>0)交x軸于A(4,0)、B(8,0)兩點,交y軸于點C,且$\frac{OC}{OB}$=$\frac{1}{2}$.
(1)求拋物線的解析式;
(2)若動直線EF(EF∥x軸)從點C開始,以每秒1個長度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動.連結(jié)FP,設(shè)運動時間t秒.
①當(dāng)t為何值時,$\frac{EF•OP}{EF+OP}$的值最大,并求出最大值;
②設(shè)AC與EF交于點M,求當(dāng)t為何值時,M、P、A、F所圍成的圖形是平行四邊形?等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.問題探究:
(1)如圖①,△ABC為等腰三角形,AB=AC=a,∠BAC=120°,則△ABC的面積為$\frac{\sqrt{3}}{4}{a}^{2}$(用含a的代數(shù)式表示)
(2)如圖②,△AOD與△BOC為兩個等腰直角三角形,兩個直角頂點O重合,OA=OB=OC=OD=a.若△AOD與△BOC不重合,連接AB,CD,求四邊形ABCD面積最大值.
問題解決:
如圖③,點O為某電視臺所在位置,現(xiàn)要在距離電視臺5km的地方修建四個電視信號中轉(zhuǎn)站,分別記為A、B、C、D.若要使OB與OC夾角為150°,OA與OD夾角為90°(∠AOD與∠BOC不重合且點O、A、B、C、D在同一平面內(nèi)),則符合題意的四個中轉(zhuǎn)站所圍成的四邊形面積有無最大值?如果有,求出最大值,如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.閱讀下列材料:
1×2=$\frac{1}{3}$(1×2×3-0×1×2)
2×3=$\frac{1}{3}$(2×3×4-1×2×3)
3×4=$\frac{1}{3}$(3×4×5-2×3×4)
以上三個等式相加可得:
1×2+2×3+3×4=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)=$\frac{1}{3}$(1×2×3-0×1×2+2×3×4-1×2×3×4×5-2×3×4)=$\frac{1}{3}$(3×4×5-0×1×2)=20
(1)計算:1×2+2×3+3×4+…+9×10+10×11(寫出過程);
(2)1×2+2×3+3×4+…+n×(n+1)=$\frac{1}{3}$n(n+1)(n+2);(直接寫出過程)
(3)根據(jù)上述方法,計算1×2×3+2×3×4+3×4×5+…+7×8×9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.若A與B都是三次多項式,則關(guān)于A與B的差,有下列說法:①一定是三次式;②可能是六次式;③可能是一次式;④可能是非零常數(shù);其中不正確的是①②.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.如果關(guān)于x的方程(a-1)x2-$\sqrt{2}$x-1=0有兩個不相等的實數(shù)根,那么a的取值范圍是a>$\frac{1}{2}$且a≠1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,直線AB交y軸于A點,交x軸于B點,A(0,6),B(6,0).
(1)現(xiàn)在一直角三角板的直角頂點放置于AB的中點C,并繞C點旋轉(zhuǎn),兩直角邊分別交x軸、y軸于N、M(如圖)兩點,求證:CM=CN;
(2)已知點D(4,6),求點D關(guān)于直線AB對稱的點的坐標(biāo);
(3)若E是線段OB上一點,∠AEO=67.5°,OF⊥AE于G,交AB于F,求$\frac{GE}{AE-OF}$的值.

查看答案和解析>>

同步練習(xí)冊答案