精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,E(8,0),F(xiàn)(0,6).
(1)當(dāng)G(4,8)時(shí),則∠FGE=
 
°;
(2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點(diǎn)P,使∠FPE=90°且四邊形OEPF被過P點(diǎn)的一條直線分割成兩部分后,可以拼成一個(gè)正方形.
要求:寫出點(diǎn)P點(diǎn)坐標(biāo),畫出過P點(diǎn)的分割線并指出分割線(不必說明理由,不寫畫法).
分析:(1)利用各點(diǎn)坐標(biāo)進(jìn)而得出△FQG∽△GRE,求出對(duì)應(yīng)角相等,進(jìn)而得出答案;
(2)利用網(wǎng)格結(jié)合已知得出當(dāng)P點(diǎn)坐標(biāo)為(7,7)時(shí),符合題意.
解答:精英家教網(wǎng)解:(1)∵E(8,0),F(xiàn)(0,6).
當(dāng)G(4,8)時(shí),
∴FQ=4,GQ=2,GR=8,RE=4,
FQ
GR
=
GQ
ER
=
1
2
,
又∵∠FQG=∠GRE=90°,
∴△FQG∽△GRE,
∴∠FGQ=∠REG,∠GFQ=∠RQE,
∴∠FGQ+∠RGE=90°,
∴∠FGE=90°,
故答案為:90;                     

(2)如圖所示:P (7,7),PM是分割線.
點(diǎn)評(píng):此題主要考查了應(yīng)用設(shè)計(jì)與作圖以及相似三角形的判定與性質(zhì),借助網(wǎng)格得出線段長(zhǎng)度是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案