【題目】計算:50°﹣45°30'=_____

【答案】4°30′

【解析】

先根據(jù)1°=60' 變形得到原式=49"60' -45°30', 再分別相減即可.

: 50°45°30'=49°60'-45°30'=4°30′.

故答案為: 4°30′.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】室內(nèi)溫度是15℃,室外溫度是﹣3℃,則室外溫度比室內(nèi)溫度低(
A.12℃
B.18℃
C.﹣12℃
D.﹣18℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x﹣3y=3,則5﹣x+3y的值是(
A.8
B.2
C.﹣2
D.﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店有單價為10元、15元和20元的三種文具盒出售,該商店統(tǒng)計了2014年3月份這三種文具盒的銷售情況,并繪制統(tǒng)計圖(不完整)如下:

(1)這次調(diào)查中一共抽取了多少個文具盒?
(2)求出圖1中表示“15元”的扇形所占圓心角的度數(shù);
(3)在圖2中把條形統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【新知理解】

如圖①,若點、在直線l同側(cè),在直線l上找一點,使的值最小.

作法:作點關(guān)于直線l的對稱點,連接交直線l于點,則點即為所求.

【解決問題】

如圖②,是邊長為6cm的等邊三角形的中線,點分別在、上,則的最小值為 cm;

【拓展研究】

如圖③,在四邊形的對角線上找一點,使.(保留作圖痕跡,并對作圖方法進行說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,ACBDCE均為等邊三角形,當(dāng)DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE.

填空:① AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______

(2)拓展研究:

如圖2,ACBDCE均為等腰三角形,且∠ACB=DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.

(3)探究發(fā)現(xiàn):

1中的ACBDCE,在DCE旋轉(zhuǎn)過程中當(dāng)點A,D,E不在同一直線上時,設(shè)直線ADBE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸的原點為0,點A、B、C是數(shù)軸上的三點,點B對應(yīng)的數(shù)位1,AB=6,BC=2,動點P、Q同時從A、C出發(fā),分別以每秒2個長度單位和每秒1個長度單位的速度沿數(shù)軸正方向運動.設(shè)運動時間為t秒(t>0)
(1)求點A、C分別對應(yīng)的數(shù);
(2)求點P、Q分別對應(yīng)的數(shù)(用含t的式子表示)
(3)試問當(dāng)t為何值時,OP=OQ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是高,E、F分別是ABAC的中點.

1)若四邊形AEDF的周長為24,AB=15,求AC的長;

2)求證:EF垂直平分AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣1)2018﹣|﹣2|+3×(﹣2)+2

查看答案和解析>>

同步練習(xí)冊答案