【題目】如圖,點上的中點,,垂足分別是點.

(1),求證:

(2),求證:四邊形是矩形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)由“SAS”可證BFD≌△CED;

2)由三角形內(nèi)角和定理可得∠A=90°,由三個角是直角的四邊形是矩形可判定四邊形AEDF是矩形.

證明:(1)∵點DABCBC上的中點

BD=CD

又∵DEAC,DFAB,垂足分別是點E、F

∴∠BFD=DEC=90°

BD=CD,∠BFD=DEC,∠B=C

∴△BFD≌△CEDAAS

2)∵∠B+C=90°,∠A+B+C=180°

∴∠A=90°

∵∠BFD=DEC=90°

∴∠A=BFD=DEC=90°

∴四邊形AEDF是矩形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,MAD的中點,BMCM

求證:(1ABM≌△DCM;

2)四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為12的正方形ABCD中,E是邊CD的中點,將ADE沿AE對折至AFE,延長EFBC于點G.BG的長為(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最大的負整數(shù),,c-4的相反數(shù),且a,b,c分別是點A.B.C在數(shù)軸上對應(yīng)的數(shù).

1)求a,b,c的值,并在數(shù)軸上標出點A,B,C;

2)在數(shù)軸上,若DA的距離剛好是3,則D點叫做A幸福點”.A的幸福點D所表示的數(shù)應(yīng)該是_______________.

3)若動點P從點B出發(fā)沿數(shù)軸向正方向運動,動點Q同時從點A出發(fā)也沿數(shù)軸向正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度,求運動幾秒后,點P可以追上點Q?

4)在數(shù)軸上,若MA,C的距離之和為6,則M叫做A,C幸福中心”.請直接寫出所有點M在數(shù)軸上對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若變量z是變量y的函數(shù),同時變量y是變量x的函數(shù),那么我們把變量z叫做變量x的“迭代函數(shù)”.

例如:z2y3,yx1,則z2x132x1,那么z2x1就是zx之間的“迭代函數(shù)”解析式.

1)當2006x2020時,zy2,,請求出zx之間的“迭代函數(shù)”的解析式及z的最小值;

2)若z2yayax24axba0,當1x3時,“迭代函數(shù)”z的取值范圍為1z17,求ab的值;

3)已知一次函數(shù)yax1經(jīng)過點1,2zay2b2ycb4(其中a、b、c均為常數(shù)),聰明的你們一定知道“迭代函數(shù)”zx的二次函數(shù),若x1、x2x1x2)是“迭代函數(shù)”z3的兩個根,點x3,2是“迭代函數(shù)”z的頂點,而且x1、x2x3還是一個直角三角形的三條邊長,請破解“迭代函數(shù)”z關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在抗洪搶險中,解放軍戰(zhàn)士的沖鋒舟加滿油沿東西方向的河流搶救災(zāi)民,早晨從地出發(fā),晚上到達地,約定向東為正方向,當天的航行路程記錄如下(單位:千米):,,,,,

1)請你幫忙確定地位于地的什么方向,距離地多少千米?

2)若沖鋒舟每千米耗油升,郵箱容量為升,求沖鋒舟當天救災(zāi)過程中至少還需補充多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線軸上.已知C1(1,-1),C2, ),則點A3的坐標是________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點A,B,AB=2,∠OAB=45°

1)求一次函數(shù)的解析式;

2)如果在第二象限內(nèi)有一點C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當ABC的面積與ABO的面積相等時a的值;

3)在x軸上,是否存在點P,使PAB為等腰三角形?若存在,請直接寫出所有符合條件的點P坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案