【題目】問(wèn)題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問(wèn)題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點(diǎn),P是⊙O上一動(dòng)點(diǎn),求PM的最大值.
問(wèn)題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在BC路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F.也就是,分別在、線段AB和AC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).
圖① 圖② 圖③
【答案】(1)5;(2)18;(3)(3-9)km.
【解析】(1)如圖(1),設(shè)外接圓的圓心為O,連接OA, OB,根據(jù)已知條件可得△AOB是等邊三角形,由此即可得半徑;
(2)如圖(2)所示,連接MO并延長(zhǎng)交⊙O于N,連接OP,顯然,MN即為MP的最大值,根據(jù)垂徑定理求得OM的長(zhǎng)即可求得MN的最大值;
(3) 如圖(3)所示,假設(shè)P點(diǎn)即為所求點(diǎn),分別作出點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn)P、P"連接PP、PE,PE,P"F,PF,PP",則PP"即為最短距離,其長(zhǎng)度取決于PA的長(zhǎng)度, 根據(jù)題意正確畫出圖形,得到點(diǎn)P的位置,根據(jù)等邊三角形、勾股定理等進(jìn)行求解即可得PE+EF+FP的最小值.
(1)如圖(1),設(shè)外接圓的圓心為O,連接OA, OB,
∵O是等腰三角形ABC的外心,AB=AC,
∴∠BAO=∠OAC=∠BAC==60°,
∵OA=OB,
∴△AOB是等邊三角形,
∴OB=AB=5,
故答案為:5;
(2)如圖(2)所示,連接MO并延長(zhǎng)交⊙O于N,連接OP,
顯然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,
∴PM的最大值為18;
(3) 如圖(3)所示,假設(shè)P點(diǎn)即為所求點(diǎn),分別作出點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn)P、P"連接PP、PE,PE,P"F,PF,PP"
由對(duì)稱性可知PE+EF+FP=PE+EF+FP"=PP",且P、E、F、P"在一條直線上,所以PP"即為最短距離,其長(zhǎng)度取決于PA的長(zhǎng)度,
如圖(4),作出弧BC的圓心O,連接AO,與弧BC交于P,P點(diǎn)即為使得PA最短的點(diǎn),∵AB=6km,AC=3km,∠BAC=60°,
∴ABC是直角三角形,∠ABC=30°,BC=3,
BC所對(duì)的圓心角為60°,∴OBC是等邊三角形,∠CBO=60°,BO=BC=3,
∴∠ABO=90°,AO=3,PA=3-3,
∠PAE=∠EAP,∠PAF=∠FAP",
∴∠PAP"=2∠ABC=120°,PA=AP",
∴∠APE=∠AP"F=30°,
∵PP"=2PAcos∠APE=PA=3-9,
所以PE+EF+FP的最小值為3-9km.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推動(dòng)我縣“三進(jìn)校園”活動(dòng)的廣泛開(kāi)展,引導(dǎo)學(xué)生走向操場(chǎng),走到陽(yáng)光下,積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的值為 ;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買雙運(yùn)動(dòng)鞋,建議購(gòu)買號(hào)運(yùn)動(dòng)鞋 雙.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=13,BC=14,AC=15,點(diǎn)D在AC上(可與點(diǎn)A,C重合),分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足為E,F,則AE+CF的最大值為_____,最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人去年水果批發(fā)市場(chǎng)采購(gòu)蘋果,他看中了、兩家蘋果.這兩家蘋果品質(zhì)一樣,零售價(jià)都為6元/千克,批發(fā)價(jià)各不相同.
(1)家規(guī)定:批發(fā)數(shù)量不超過(guò)1000千克,按零售價(jià)的92%優(yōu)惠;批發(fā)數(shù)量超過(guò)1000千克且不超過(guò)2000千克,所有蘋果按零售價(jià)的90%優(yōu)惠;超過(guò)2000千克,所有蘋果按零售價(jià)的88%優(yōu)惠.
家的規(guī)定如下表:
數(shù)量范圍(千克) | 0—500 | 500以上—1500 | 1500以上—2500 | 2500以上 |
價(jià)格(元) | 零售價(jià)的95% | 零售價(jià)的85% | 零售價(jià)的75% | 零售價(jià)的70% |
表格說(shuō)明:批發(fā)價(jià)格分段計(jì)算,如某人批發(fā)蘋果2100千克,則總費(fèi)用=6×95%×500+6×85%×1000+6×75%×(2100-1500).
(1)如果他批發(fā)600千克蘋果,那么他在、兩家批發(fā)分別需要多少元?
(2)如果他批發(fā)千克蘋果(1500<<2000),請(qǐng)你分別用含的代數(shù)式表示在、兩家批發(fā)所需的費(fèi)用.
(3)現(xiàn)在他要批發(fā)1800千克蘋果,選擇在哪家批發(fā)更優(yōu)惠呢?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊三角形ABC的頂點(diǎn)B、C的坐標(biāo)分別為(0,0)和(0,4).
(1)求頂點(diǎn)A的坐標(biāo).
(2)D為第二象限內(nèi)一點(diǎn),作出點(diǎn)P,使得P到DB和DC的距離相等,且到點(diǎn)E的距離等于DB(不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊三角板重疊放置,其中∠C=∠BDE=90°,∠A=45°,∠E=30°,AB=DE=12.求重疊部分四邊形DBCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著新能源汽車推廣力度加大,產(chǎn)業(yè)快速發(fā)展,越來(lái)越多的消費(fèi)者開(kāi)始接受并購(gòu)買新能源汽車,我國(guó)新能源汽車的生產(chǎn)量和銷售量都大幅增長(zhǎng),下圖是2014-2017年新能源汽車生產(chǎn)和銷售的情況:根據(jù)統(tǒng)計(jì)圖中提供的信息,預(yù)估全國(guó)2018年新能源汽車銷售量約為__________萬(wàn)量,你的預(yù)估理由是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬(wàn)元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬(wàn)元,今年銷售額只有90萬(wàn)元.
(1)今年5月份A款汽車每輛售價(jià)多少萬(wàn)元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)為7.5萬(wàn)元,B款汽車每輛進(jìn)價(jià)為6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元且不少于99萬(wàn)元的資金購(gòu)進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?
(3)如果B款汽車每輛售價(jià)為8萬(wàn)元,為打開(kāi)B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬(wàn)元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com