如圖,矩形AOBC中,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)D的縱坐標(biāo)為3,若將矩形沿直線AD折疊,則頂點(diǎn)C恰好落在邊OB上E處,那么圖中陰影部分的面積為                  (   )
A.30B.32C.34D.16
A
解:由折疊可知△ADE和△ACD關(guān)于AD成軸對稱,
故AE=AC,CD=DE=CB-CD=8-3=5.
所以BE=4,
設(shè)OE=,則OB=AC=AE=x+4.
在Rt△AOE中,由勾股定理,得82+x2=(x+4)2
解得x=6,故OB=10.
所以陰影部分的面積為:10×8-2SADE=80-50=30(cm2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,P是正方形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD,若△PAB是等邊三角形,則∠DPA為
 A. 600          B. 750         C. 800        D. 900                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形長8cm,寬6cm,與該矩形面積相等的正方形的邊長是       cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知梯形,,,,點(diǎn)上,,中點(diǎn),在上找一點(diǎn)使的值最小,此時其最小值一定等于(   )
A.6B.8C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形紙片ABCD中,對角線AC、BD交于點(diǎn)O,折疊正方形紙片,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開后,折痕DE分別交AB、AC于點(diǎn)E、G,連接GF。下列結(jié)論中正確的有        
;②;③四邊形AEFG是菱形;④BE=2OG。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若梯形的面積為6㎝2,高為2㎝,則此梯形地中位線長為         ㎝.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,沿虛線將平行四邊形ABCD剪開,則得到的四邊形是(   )
A.梯形B.平行四邊形C.矩形D.菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形中,,,于點(diǎn)E,F(xiàn)是CD的中點(diǎn),DG是梯形的高.
(1)求證:四邊形AEFD是平行四邊形;
(2)設(shè),四邊形DEGF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),我們將相同的兩塊含30°角的直角三角尺Rt△DEF與Rt△ABC疊合,使DE在AB上,DF過點(diǎn)C,已知AC=DE=6。將圖(1)中的△DEF繞點(diǎn)D逆時針旋轉(zhuǎn)(DF與AB不重合),使邊DF、DE分別交AC、BC于點(diǎn)P、Q,如圖(2)。
(1)求證:△CQD∽△APD
(2)連結(jié)PQ,設(shè)AP=x,求面積S△PCQ關(guān)于x的函數(shù)關(guān)系式;
(3)將圖(1)中的△DEF 向左平移(A、D不重合),使邊FD、FE分別交AC、BC于點(diǎn)M、N,如圖(3),連結(jié)MN,試問△MCN面積是否存在最大值、如不存在,請說明理由;如存在請求出S△MCN 的最大值,

查看答案和解析>>

同步練習(xí)冊答案