【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2 ),點(diǎn)B在x軸的正半軸上,點(diǎn)E為線段AD的中點(diǎn).
(1)如圖1,求∠DAO的大小及線段DE的長(zhǎng);
(2)過點(diǎn)E的直線l與x軸交于點(diǎn)F,與射線DC交于點(diǎn)G.連接OE,△OEF′是△OEF關(guān)于直線OE對(duì)稱的圖形,記直線EF′與射線DC的交點(diǎn)為H,△EHC的面積為3 .
①如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求GH,DG的長(zhǎng);
②當(dāng)點(diǎn)G在點(diǎn)H的右側(cè)時(shí),求點(diǎn)F的坐標(biāo)(直接寫出結(jié)果即可).
【答案】
(1)解:∵A(﹣2,0),D(0,2 )
∴AO=2,DO=2 ,
∴tan∠DAO= = ,
∴∠DAO=60°,
∴∠ADO=30°,
∴AD=2AO=4,
∵點(diǎn)E為線段AD中點(diǎn),
∴DE=2;
(2)解:①如圖2,
過點(diǎn)E作EM⊥CD,
∴CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DEsin60°= ,
∴GH=6,
∵CD∥AB,
∴∠DGE=∠OFE,
∵△OEF′是△OEF關(guān)于直線OE的對(duì)稱圖形,
∴△OEF′≌△OEF,
∴∠OFE=∠OF′E,
∵點(diǎn)E是AD的中點(diǎn),
∴OE= AD=AE,
∵∠EAO=60°,
∴△EAO是等邊三角形,
∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,
∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEH=∠DGE,
∵∠DEH=∠EDG,
∴△DHE∽△DEG,
∴ ,
∴DE2=DG×DH,
設(shè)DG=x,則DH=x+6,
∴4=x(x+6),
∴x1=﹣3+ ,x2=﹣3﹣ ,
∴DG=﹣3+ .
②如圖3,
過點(diǎn)E作EM⊥CD,
∴CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DEsin60°= ,
∴GH=6,
∵CD∥AB,
∴∠DHE=∠OFE,
∵△OEF′是△OEF關(guān)于直線OE的對(duì)稱圖形,
∴△OEF′≌△OEF,
∴∠OFE=∠OF′E,
∵點(diǎn)E是AD的中點(diǎn),
∴OE= AD=AE,
∵∠EAO=60°,
∴△EAO是等邊三角形,
∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,
∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,
∴AD∥OF′,
∴∠OF′E=∠DEH,
∴∠DEG=∠DHE,
∵∠DEG=∠EDH,
∴△DGE∽△DEH,
∴ ,
∴DE2=DG×DH,
設(shè)DH=x,則DG=x+6,
∴4=x(x+6),
∴x1=﹣3+ ,x2=﹣3﹣ ,
∴DH=﹣3+ .
∴DG=3+
∴DG=AF=3+ ,
∴OF=5+ ,
∴F(﹣5﹣ ,0).
【解析】(1)根據(jù)點(diǎn)A的坐,點(diǎn)D的坐標(biāo),在Rt△AOD中,利用解直角三角形易求出結(jié)論。
(2)①由(1)可知∠DAO=60°,添加輔助線,過點(diǎn)E作EM⊥CD,利用解直角三角形可求出EM、GH的長(zhǎng),根據(jù)已知易證明△OEF′≌△OEF,可得出角相等,點(diǎn)E是AD的中點(diǎn),易得到△EAO是等邊三角形,再證明△DHE∽△DEG,得出對(duì)應(yīng)邊成比例,設(shè)DG=x,則DH=x+6,建立方程,求出方程的解即可;②要求點(diǎn)F的坐標(biāo),就需求OF的長(zhǎng),解法與①類似求出DG,DG=AF,即可求出OF的長(zhǎng),從而求出點(diǎn)F的坐標(biāo)。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),且為的中點(diǎn),雙曲線經(jīng)過、兩點(diǎn).
(1)求、、的值;
(2)如圖1,點(diǎn)在軸上,若四邊形是平行四邊形,求點(diǎn)的坐標(biāo);
(3)如圖2,在(2)的條件下,動(dòng)點(diǎn)在雙曲線上,點(diǎn)在軸上,若以、、、為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)、的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲類電視節(jié)目的喜愛情況,采用抽樣的方法在七年級(jí)選取了一個(gè)班的同學(xué),通過問卷調(diào)查,收集數(shù)據(jù)、整理數(shù)據(jù),制作了如下兩個(gè)整統(tǒng)計(jì)圖,請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖分析數(shù)據(jù),回答以下問題:
(1)七年級(jí)的這個(gè)班共有學(xué)生_____人,圖中______,______,在扇形統(tǒng)計(jì)圖中,“體育”類電視節(jié)目對(duì)應(yīng)的圓心角為:______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1750名學(xué)生中大約有多少人喜歡“娛樂”類電視節(jié)目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖①的位置擺放,將△DEF繞點(diǎn)A(F)逆時(shí)針旋轉(zhuǎn)60°后,得到如圖②,測(cè)得CG=6 ,則AC長(zhǎng)是( )
A.6+2
B.9
C.10
D.6+6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)求證:∠ABE=∠ACD;
(2)求證:過點(diǎn)A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法:
①負(fù)數(shù)的立方根仍為負(fù)數(shù);
②1的平方根與立方根都是1;
③4的平方根的立方根是 ;
④互為相反數(shù)的兩個(gè)數(shù)的立方根仍為相反數(shù),
正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系xOy中,函數(shù)y= (x>0)的圖象與一次函數(shù)y=kx﹣k的圖象的交點(diǎn)為A(m,2).
(1)求一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△PAB的面積是4,直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com